Решение логических уравнений и систем логических уравнений. Логические уравнения Как решать логические уравнения по информатике

Решение систем логических уравнений методом замены переменных

Метод замены переменных применяется, если некоторые переменные входят в состав уравнений только в виде конкретного выражения, и никак иначе. Тогда это выражение можно обозначить новой переменной.

Пример 1.

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, х2, х3, х4, х5, х6, х7, х8, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

(x1 → х2) → (х3→ х4) = 1

(х3 → х4) → (х5 → х6) = 1

(х5 → х6) → (х7 → х8) = 1

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, х2, х3, х4, х5, х6, х7, х8, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Решение:

(x1 → х2) = y1; (х3 → х4) = y2; (х5 → х6) = y3; (х7 → х8) = y4.

Тогда можно за­пи­сать си­сте­му в виде од­но­го урав­не­ния:

(y1 → y2) ∧ (y2 → y3) ∧ (y3 → y4) = 1. Конъюнкция равна 1 (истинна), когда каждый операнд принимает значение 1. Т.е. каждая из импликаций должна быть истинна, а это выполняется при всех значениях, кроме (1 → 0). Т.е. в таблице значений переменных y1, y2, y3, y4 единица не должна стоять левее нуля:

Т.е. условия выполняются для 5 наборов y1-y4.

Т.к. y1 = x1 → x2, то значение y1 = 0 достигается на единственном наборе x1, x2: (1, 0), а значение y1 = 1 – на трех наборах x1, x2: (0,0) , (0,1), (1,1). Аналогично для y2, y3, y4.

Поскольку каждый набор (x1,x2) для переменной y1 сочетается с каждым набором (x3,x4) для переменной y2 и т.д., то количества наборов переменных x перемножаются:

Кол-во наборов на x1…x8

Сло­жим ко­ли­че­ство наборов: 1 + 3 + 9 + 27 + 81 = 121.

Ответ: 121

Пример 2.

Сколько существует различных наборов значений логических переменных x1, x2, ... x9, y1, y2, ... y9, которые удовлетворяют всем перечисленным ниже условиям?

(¬ (x1 ≡ y1)) ≡ (x2 ≡ y2)

(¬ (x2 ≡ y2)) ≡ (x3 ≡ y3)

(¬ (x8 ≡ y8)) ≡ (x9 ≡ y9)

В ответе не нужно перечислять все различные наборы значений переменных x1, x2, ... x9, y1, y2, ... y9, при которых выполнена данная система равенств. В качестве ответа Вам нужно указать количество таких наборов.

Решение:

Сде­ла­ем за­ме­ну пе­ре­мен­ных:

(x1 ≡ y1) = z1, (x2 ≡ y2) = z2,…. ,(x9 ≡ y9) = z9

Систему можно записать в виде одного уравнения:

(¬ z1 ≡ z2) ∧ (¬ z2 ≡ z3) ∧ …..∧ (¬ z8 ≡ z9)

Эквивалентность истинна, только если оба операнда равны. Решениями этого уравнения будут два набора:

z1 z2 z3 z4 z5 z6 z7 z8 z9
0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1

Т.к. zi = (xi ≡ yi), то значению zi = 0 соответствуют два набора (xi,yi): (0,1) и (1,0), а значению zi = 1 - два набора (xi,yi): (0,0) и (1,1).

Тогда первому набору z1, z2,…, z9 соответствует 2 9 наборов (x1,y1), (x2,y2),…, (x9,y9).

Столько же соответствует второму набору z1, z2,…, z9. Тогда всего 2 9 +2 9 = 1024 наборов.

Ответ: 1024

Решение систем логических уравнений методом визуального определения рекурсии.

Этот метод применяется, если система уравнений достаточно проста и порядок увеличения количества наборов при добавлении переменных очевиден.

Пример 3.

Сколь­ко раз­лич­ных ре­ше­ний имеет си­сте­ма урав­не­ний

¬x9 ∨ x10 = 1,

где x1, x2, … x10 - ло­ги­че­ские пе­ре­мен­ные?

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний x1, x2, … x10, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Решение:

Решим первое уравнение. Дизъюнкция равна 1, если хотя бы один из ее операндов равен 1. Т.е. решениями являются наборы:

Для x1=0 существуют два значения x2 (0 и 1), а для x1=1 только одно значение x2 (1), такие, что набор (x1,x2) является решением уравнения. Всего 3 набора.

Добавим переменную x3 и рассмотрим второе уравнение. Оно аналогично первому, значит для x2=0 существуют два значения x3 (0 и 1), а для x2=1 только одно значение x3 (1), такие, что набор (x2,x3) является решением уравнения. Всего 4 набора.

Несложно заметить, что при добавлении очередной переменной добавляется один набор. Т.е. рекурсивная формула количества наборов на (i+1) переменных:

N i +1 = N i + 1. Тогда для десяти переменных получим 11 наборов.

Ответ: 11

Решение систем логических уравнений различного типа

Пример 4.

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x 1 , ..., x 4 , y 1 ,..., y 4 , z 1 ,..., z 4 , ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

(x 1 → x 2) ∧ (x 2 → x 3) ∧ (x 3 → x 4) = 1

(y 1 → y 2) ∧ (y 2 → y 3) ∧ (y 3 → y 4) = 1

(z 1 → z 2) ∧ (z 2 → z 3) ∧ (z 3 → z 4) = 1

x 4 ∧ y 4 ∧ z 4 = 0

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x 1 , ..., x 4 , y 1 , ..., y 4 , z 1 , ..., z 4 , при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств.

В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Решение:

Заметим, что три уравнения системы одинаковы на различных независимых наборах переменных.

Рассмотрим первое уравнение. Конъюнкция истинна (равна 1) только тогда, когда все ее операнды истинны (равны 1). Импликация равна 1 на всех наборах, кроме (1,0). Значит, решением первого уравнения будут такие наборы x1, x2, x3, x4, в которых 1 не стоит левее 0 (5 наборов):

Аналогично, решениями второго и третьего уравнений будут абсолютно такие же наборы y1,…,y4 и z1,…, z4.

Теперь проанализируем четвертое уравнение системы: x 4 ∧ y 4 ∧ z 4 = 0. Решением будут все наборы x4, y4, z4, в которых хотя бы одна из переменных равна 0.

Т.е. для x4 = 0 подойдут все возможные наборы (y4, z4), а для x4 = 1 подойдут наборы (y4, z4), в которых присутствует хотя бы один ноль: (0, 0), (0,1) , (1,0).

Кол-во наборов

Общее количество наборов 25 + 4*9 = 25 + 36 = 61.

Ответ: 61

Решение систем логических уравнений методом построения рекуррентных формул

Метод построения рекуррентных формул применяется при решении сложных систем, в которых порядок увеличения количества наборов неочевиден, а построение дерева невозможно из-за объемов.

Пример 5.

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, … x7, y1, y2, … y7, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

(x1 ∨ y1) ∧ ((x2 ∧ y2) → (x1 ∧ y1)) = 1

(x2 ∨ y2) ∧ ((x3 ∧ y3) → (x2 ∧ y2)) = 1

(x6 ∨ y6) ∧ ((x7 ∧ y7) → (x6 ∧ y6)) = 1

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, ..., x7, y1, y2, ..., y7, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Решение:

Заметим, что первые шесть уравнений системы одинаковы и отличаются только набором переменных. Рассмотрим первое уравнение. Его решением будут следующие наборы переменных:

Обозначим:

число наборов (0,0) на переменных (x1,y1) через A 1 ,

число наборов (0,1) на переменных (x1,y1) через B 1 ,

число наборов (1,0) на переменных (x1,y1) через C 1 ,

число наборов (1,1) на переменных (x1,y1) через D 1 .

число наборов (0,0) на переменных (x2,y2) через A 2 ,

число наборов (0,1) на переменных (x2,y2) через B 2 ,

число наборов (1,0) на переменных (x2,y2) через C 2 ,

число наборов (1,1) на переменных (x2,y2) через D 2 .

Из дерева решений видим, что

A 1 =0, B 1 =1, C 1 =1, D 1 =1.

Заметим, что набор (0,0) на переменных (x2,y2) получается из наборов (0,1), (1,0) и (1,1) на переменных (x1,y1). Т.е. A 2 =B 1 +C 1 +D 1 .

Набор (0,1) на переменных (x2,y2) получается из наборов (0,1), (1,0) и (1,1) на переменных (x1,y1). Т.е. B 2 =B 1 +C 1 +D 1 .

Аналогично рассуждая, заметим, что С 2 =B 1 +C 1 +D 1 . D 2 = D 1 .

Таким образом, получаем рекуррентные формулы:

A i+1 = B i + C i + D i

B i+1 = B i + C i + D i

C i+1 = B i + C i + D i

D i+1 = A i +B i + C i + D i

Составим таблицу

Наборы Обозн . Формула

Количество наборов

i=1 i=2 i=3 i=4 i=5 i=6 i=7
(0,0) A i A i+1 =B i +C i +D i 0 3 7 15 31 63 127
(0,1) B i B i+1 =B i +C i +D i 1 3 7 15 31 63 127
(1,0) C i C i+1 =B i +C i +D i 1 3 7 15 31 63 127
(1,1) D i D i+1 =D i 1 1 1 1 1 1 1

Последнему уравнению (x7 ∨ y7) = 1 удовлетворяют все наборы, кроме тех, в которых x7=0 и y7=0. В нашей таблице число таких наборов A 7 .

Тогда общее количество наборов равно B 7 + C 7 + D 7 = 127+127+1 = 255

Ответ: 255

Данной материал содержит презентацию, в которой представлены методы решения логических уравнений и систем логических уравнений в задании В15 (№ 23, 2015) ЕГЭ по информатике. Известно, что это задание является одним из самых сложных среди заданий ЕГЭ. Презентация может быть полезна при проведении уроков по теме "Логика" в профильных классах, а также при подготовке к сдаче ЕГЭ.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Решение задания В15 (системы логических уравнений) Вишневская М.П., МАОУ «Гимназия №3» 18 ноября 2013 г., г. Саратов

Задание В15 - одно из самых сложных в ЕГЭ по информатике!!! Проверяются умения: преобразовывать выражения, содержащие логические переменные; описывать на естественном языке множество значений логических переменных, при которых заданный набор логических переменных истинен; подсчитывать число двоичных наборов, удовлетворяющих заданным условиям. Самое сложное, т.к. нет формальных правил, как это сделать, требуется догадка.

Без чего не обойтись!

Без чего не обойтись!

Условные обозначения конъюнкция: A /\ B , A  B , AB , А &B, A and B дизъюнкция: A \ / B , A + B , A | B , А or B отрицание:  A , А, not A эквиваленция: A  В, A  B, A  B исключающее «или»: A  B , A xor B

Метод замены переменных Сколько существует различных наборов значений логических переменных х1, х2, …, х9, х10, которые удовлетворяют всем перечисленным ниже условиям: ((x1 ≡ x2) \/ (x3 ≡ x4)) /\ (¬(x1 ≡ x2) \/ ¬(x3 ≡ x4)) = 1 ((x3 ≡ x4) \/ (x5 ≡ x6)) /\ (¬(x3 ≡ x4) \/ ¬(x5 ≡ x6)) = 1 ((x5 ≡ x6) \/ (x7 ≡ x8)) /\ (¬(x5 ≡ x7) \/ ¬(x7 ≡ x8)) = 1 ((x7 ≡ x8) \/ (x9 ≡ x10)) /\ (¬(x7 ≡ x8) \/ ¬(x9 ≡ x10)) = 1 В ответе не нужно перечислять все различные наборы х1, х2, …, х9, х10, при которых выполняется данная система равенств. В качестве ответа необходимо указать количество таких наборов (демо-версия 2012 г.)

Решение Шаг 1. Упрощаем, выполнив замену переменных t1 = x1  x2 t2 = x3  x4 t3 = x5  x6 t4 = x7  x8 t5 = x9  x10 После упрощения: (t1 \/ t2) /\ (¬t1 \/ ¬ t2) =1 (t2 \/ t3) /\ (¬t2 \/ ¬ t3) =1 (t3 \/ t4) /\ (¬t3 \/ ¬ t4) =1 (t4 \/ t5) /\ (¬t4 \/ ¬ t5) =1 Рассмотрим одно из уравнений: (t1 \/ t2) /\ (¬t1 \/ ¬ t2) =1 Очевидно, оно =1 только если одна из переменных равна 0, а другая – 1. Воспользуемся формулой для выражения операции XOR через конъюнкцию и дизъюнкцию: (t1 \/ t2) /\ (¬t1 \/ ¬ t2) = t1  t2 = ¬(t1 ≡ t2) =1 ¬(t1 ≡ t2) =1 ¬(t2 ≡ t3) =1 ¬(t3 ≡ t4) =1 ¬(t4 ≡ t5) =1

Шаг2. Анализ системы ¬(t1 ≡ t2) =1 ¬(t2 ≡ t3) =1 ¬(t3 ≡ t4) =1 ¬(t4 ≡ t5) =1 t1 t2 t3 t4 t5 0 1 0 1 0 1 0 1 0 1 Т.к. tk = x2k-1 ≡ x2k (t1 = x1  x2 ,….), то каждому значению tk соответствует две пары значений x2k-1 и x2k , например: tk =0 соответствуют две пары - (0,1) и (1,0) , а tk =1 – пары (0,0) и (1,1).

Шаг3. Подсчет числа решений. Каждое t имеет 2 решения, количество t – 5. Т.о. для переменных t существует 2 5 = 32 решения. Но каждому t соответствует пара решений х, т.е. исходная система имеет 2*32 = 64 решения. Ответ: 64

Метод исключения части решений Сколько существует различных наборов значений логических переменных х1, х2, …, х5, y1,y2,… , y5 , которые удовлетворяют всем перечисленным ниже условиям: (x1→ x2)∧(x2→ x3)∧(x3→ x4)∧(x4→ x5) =1; (y1→ y2)∧(y2→ y3)∧(y3→ y4) ∧(y4→ y5) =1; y5→ x5 =1. В ответе не нужно перечислять все различные наборы х1, х2, …, х5, y 1 ,y2,… , y5, при которых выполняется данная система равенств. В качестве ответа необходимо указать количество таких наборов.

Решение. Шаг1. Последовательное решение уравнений х1 1 0 х2 1 0 1 х3 1 0 1 1 х4 1 0 1 1 1 х5 1 0 1 1 1 1 Первое уравнение – конъюнкция нескольких операций импликации, равна 1, т.е. каждая из импликаций истинна. Импликация ложна только в одном случае, когда 1  0, во всех других случаях (0  0, 0  1, 1  1) операция возвращает 1. Запишем это в виде таблицы:

Шаг1. Последовательное решение уравнений Т.о. получено 6 наборов решений для х1,х2,х3,х4,х5: (00000), (00001), (00011), (00111), (01111), (11111). Рассуждая аналогично, приходим к выводу, что для y1, y2, y3, y4, y5 существует такой же набор решений. Т.к. уравнения эти независимы, т.е. в них нет общих переменных, то решением этой системы уравнений (без учета третьего уравнения) будет 6*6= 36 пар «иксов» и «игреков». Рассмотрим третье уравнение: y5→ x5 =1 Решением являются пары: 0 0 0 1 1 1 Не является решением пара: 1 0

Сопоставим полученные решения Там, где y5 =1, не подходят x5=0. таких пар 5. Количество решений системы: 36-5= 31 . Ответ: 31 Понадобилась комбинаторика!!!

Метод динамического программирования Сколько различных решений имеет логическое уравнение x 1 → x 2 → x 3 → x 4 → x 5 → x 6 = 1, где x 1, x 2, …, x 6 – логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполнено данное равенство. В качестве ответа нужно указать количеств о таких наборов.

Решение Шаг1. Анализ условия Слева в уравнении последовательно записаны операции импликации, приоритет одинаков. Перепишем: ((((X 1 → X 2) → X 3) → X 4) → X 5) → X 6 = 1 NB! Каждая следующая переменная зависит не от предыдущей, а от результата предыдущей импликации!

Шаг2. Выявление закономерности Рассмотрим первую импликацию, X 1 → X 2. Таблица истинности: X 1 X 2 X 1 → X 2 0 0 1 0 1 1 1 0 0 1 1 1 Из одного 0 получили 2 единицы, а из 1 получили один 0 и одну 1. Всего один 0 и три 1, это результат первой операции.

Шаг2. Выявление закономерности Подключив к результату первой операции x 3 , получим: F(x 1 ,x 2) x 3 F(x 1 ,x 2)  x 3 0 0 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 Из двух 0 – две 1, из каждой 1 (их 3) по одному 0 и 1 (3+3)

Шаг 3. Вывод формулы Т.о. можно составить формулы для вычисления количества нулей N i и количества единиц E i для уравнения с i переменными: ,

Шаг 4. Заполнение таблицы Заполним слева направо таблицу для i = 6, вычисляя число нулей и единиц по приведенным выше формулам; в таблице показано, как строится следующий столбец по предыдущему: : число переменных 1 2 3 4 5 6 Число нулей N i 1 1 3 5 11 21 Число единиц E i 1 2*1+1= 3 2*1+3= 5 11 21 43 Ответ: 43

Метод с использованием упрощений логических выражений Сколько различных решений имеет уравнение ((J → K) → (M  N  L))  ((M  N  L) → (¬ J  K))  (M → J) = 1 где J , K, L, M, N – логические переменные? В ответе не нужно перечислять все различные наборы значений J , K, L, M и N, при которых выполнено данное равенство. В качестве ответа Вам нужно указать количество таких наборов.

Решение Заметим, что J → K = ¬ J  K Введем замену переменных: J → K=А, M  N  L =В Перепишем уравнение с учетом замены: (A → B)  (B → A)  (M → J)=1 4. (A  B)  (M → J)= 1 5. Очевидно, что A  B при одинаковых значениях А и В 6. Рассмотрим последнюю импликацию M → J =1 Это возможно, если: M=J=0 M=0, J=1 M=J=1

Решение Т.к. A  B , то При M=J=0 получаем 1 + К=0. Нет решений. При M=0, J=1 получаем 0 + К=0, К=0, а N и L - любые, 4 решения: ¬ J  K = M  N  L K N L 0 0 0 0 0 1 0 1 0 0 1 1

Решение 10. При M=J=1 получаем 0+К=1 *N * L , или K=N*L, 4 решения: 11. Итого имеет 4+4=8 решений Ответ: 8 K N L 0 0 0 0 0 1 0 1 0 1 1 1

Источники информации: О.Б. Богомолова, Д.Ю. Усенков. В15: новые задачи и новое решение // Информатика, № 6, 2012, с. 35 – 39. К.Ю. Поляков. Логические уравнения // Информатика, № 14, 2011, с. 30-35. http://ege-go.ru/zadania/grb/b15/ , [ Электронный ресурс ] . http://kpolyakov.narod.ru/school/ege.htm , [ Электронный ресурс ] .


Пусть – логическая функция от n переменных. Логическое уравнение имеет вид:

Константа С имеет значение 1 или 0.

Логическое уравнение может иметь от 0 до различных решений. Если С равно 1, то решениями являются все те наборы переменных из таблицы истинности, на которых функция F принимает значение истина (1). Оставшиеся наборы являются решениями уравнения при C, равном нулю. Можно всегда рассматривать только уравнения вида:

Действительно, пусть задано уравнение:

В этом случае можно перейти к эквивалентному уравнению:

Рассмотрим систему из k логических уравнений:

Решением системы является набор переменных, на котором выполняются все уравнения системы. В терминах логических функций для получения решения системы логических уравнений следует найти набор, на котором истинна логическая функция Ф, представляющая конъюнкцию исходных функций :

Если число переменных невелико, например, менее 5, то нетрудно построить таблицу истинности для функции , что позволяет сказать, сколько решений имеет система и каковы наборы, дающие решения.

В некоторых задачах ЕГЭ по нахождению решений системы логических уравнений число переменных доходит до значения 10. Тогда построить таблицу истинности становится практически неразрешимой задачей. Для решения задачи требуется другой подход. Для произвольной системы уравнений не существует общего способа, отличного от перебора, позволяющего решать такие задачи.

В предлагаемых на экзамене задачах решение обычно основано на учете специфики системы уравнений. Повторяю, кроме перебора всех вариантов набора переменных, общего способа решения задачи нет. Решение нужно строить исходя из специфики системы. Часто полезно провести предварительное упрощение системы уравнений, используя известные законы логики. Другой полезный прием решения этой задачи состоит в следующем. Нам интересны не все наборы, а только те, на которых функция имеет значение 1. Вместо построения полной таблицы истинности будем строить ее аналог - бинарное дерево решений. Каждая ветвь этого дерева соответствует одному решению и задает набор, на котором функция имеет значение 1. Число ветвей в дереве решений совпадает с числом решений системы уравнений.

Что такое бинарное дерево решений и как оно строится, поясню на примерах нескольких задач.

Задача 18

Сколько существует различных наборов значений логических переменных x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, которые удовлетворяют системе из двух уравнений?

Ответ: Система имеет 36 различных решений.

Решение: Система уравнений включает два уравнения. Найдем число решений для первого уравнения, зависящего от 5 переменных – . Первое уравнение можно в свою очередь рассматривать как систему из 5 уравнений. Как было показано, система уравнений фактически представляет конъюнкцию логических функций. Справедливо и обратное утверждение, - конъюнкцию условий можно рассматривать как систему уравнений.

Построим дерево решений для импликации () - первого члена конъюнкции, который можно рассматривать как первое уравнение. Вот как выглядит графическое изображение этого дерева


Дерево состоит из двух уровней по числу переменных уравнения. Первый уровень описывает первую переменную . Две ветви этого уровня отражают возможные значения этой переменной – 1 и 0. На втором уровне ветви дерева отражают только те возможные значения переменной , для которых уравнение принимает значение истина. Поскольку уравнение задает импликацию, то ветвь, на которой имеет значение 1, требует, чтобы на этой ветви имело значение 1. Ветвь, на которой имеет значение 0, порождает две ветви со значениями , равными 0 и 1. Построенное дерево задает три решения, на которых импликация принимает значение 1. На каждой ветви выписан соответствующий набор значений переменных, дающий решение уравнения.

Вот эти наборы: {(1, 1), (0, 1), (0, 0)}

Продолжим построение дерева решений, добавляя следующее уравнение, следующую импликацию . Специфика нашей системы уравнений в том, что каждое новое уравнение системы использует одну переменную из предыдущего уравнения, добавляя одну новую переменную. Поскольку переменная уже имеет значения на дереве, то на всех ветвях, где переменная имеет значение 1, переменная также будет иметь значение 1. Для таких ветвей построение дерева продолжается на следующий уровень, но новые ветви не появляются. Единственная ветвь, где переменная имеет значение 0, даст разветвление на две ветви, где переменная получит значения 0 и 1. Таким образом, каждое добавление нового уравнения, учитывая его специфику, добавляет одно решение. Исходное первое уравнение:

имеет 6 решений. Вот как выглядит полное дерево решений для этого уравнения:


Второе уравнение нашей системы аналогично первому:

Разница лишь в том, что в уравнении используются переменные Y. Это уравнение также имеет 6 решений. Поскольку каждое решение для переменных может быть скомбинировано с каждым решением для переменных , то общее число решений равно 36.

Заметьте, построенное дерево решений дает не только число решений (по числу ветвей), но и сами решения, выписанные на каждой ветви дерева.

Задача 19

Сколько существует различных наборов значений логических переменных x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, которые удовлетворяют всем перечисленным ниже условиям?

Эта задача является модификацией предыдущей задачи. Разница в том, что добавляется еще одно уравнение, связывающее переменные X и Y.

Из уравнения следует, что когда имеет значение 1(одно такое решение существует), то и имеет значение 1. Таким образом, существует один набор, на котором и имеют значения 1. При , равном 0, может иметь любое значение, как 0, так и 1. Поэтому каждому набору с , равном 0, а таких наборов 5, соответствует все 6 наборов с переменными Y. Следовательно, общее число решений равно 31.

Задача 20

Решение: Вспоминания основные эквивалентности, запишем наше уравнение в виде:

Циклическая цепочка импликаций означает тождественность переменных, так что наше уравнение эквивалентно уравнению:

Это уравнение имеет два решения, когда все равны либо 1, либо 0.

Задача 21

Сколько решений имеет уравнение:

Решение: Так же, как и в задаче 20, от циклических импликаций перейдем к тождествам, переписав уравнение в виде:

Построим дерево решений для этого уравнения:


Задача 22

Сколько решений имеет следующая система уравнений?

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. В математике существуют определенные задачи, которые посвящены логике высказываний. Чтобы решить данного рода уравнения необходимо обладать неким багажом знаний: знания законов логики высказываний, знания таблиц истинности логических функций 1 или 2 переменных, методы преобразования логических выражений. Кроме того, необходимо знать следующие свойства логических операций: конъюнкции, дизъюнкции, инверсии, импликации и эквивалентности.

Любую логическую функцию от \ переменных - \можно задать таблицей истинности.

Решим несколько логически уравнений:

\[\rightharpoondown X1\vee X2=1 \]

\[\rightharpoondown X2\vee X3=1\]

\[\rightharpoondown X3\vee X4=1 \]

\[\rightharpoondown X9\vee X10=1\]

Начнем решение с \[Х1\] и определим какие значения данная переменная может принимать: 0 и 1. Далее рассмотрим каждое их вышеприведенных значений и посмотрим, какое может быть при этом \[Х2.\]

Как видно из таблицы наше логическое уравнение имеет 11 решений.

Где можно решить логическое уравнение онлайн?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа № 18»

городского округа город Салават Республики Башкортостан

Системы логических уравнений

в задачах ЕГЭ по информатике

Раздел «Основы алгебры логики» в заданиях ЕГЭ считается одним из самых сложных и плохо решаемых. Средний процент выполнения заданий по данной теме самый низкий и составляет 43,2.

Раздел курса

Средний процент выполнения по группам заданий

Кодирование информации и измерение ее количества

Информационное моделирование

Системы счисления

Основы алгебры логики

Алгоритмизация и программирование

Основы информационно- коммуникационных технологий

Исходя из спецификации КИМа 2018 года этот блок включает четыре задания разного уровня сложности.

задания

Проверяемые

элементы содержания

Уровень сложности задания

Умение строить таблицы истинности и логические схемы

Умение осуществлять поиск информации в сети Интернет

Знание основных понятий и законов

математической логики

Умение строить и преобразовывать логические выражения

Задание 23 является высоким по уровню сложности, поэтому имеет самый низкий процент выполнения. Среди подготовленных выпускников (81-100 баллов) 49,8% выполнивших, средне подготовленные (61-80 баллов) справляются на 13,7%, оставшаяся группа учеников данное задание не выполняет.

Успешность решения системы логических уравнений зависит от знания законов логики и от четкого применения методов решения системы.

Рассмотрим решение системы логических уравнений методом отображения.

(23.154 Поляков К.Ю.) Сколько различных решений имеет система уравнений?

((x 1 y 1 ) (x 2 y 2 )) (x 1 x 2 ) (y 1 y 2 ) =1

((x 2 y 2 ) (x 3 y 3 )) (x 2 x 3 ) (y 2 y 3 ) =1

((x 7 y 7 ) (x 8 y 8 )) (x 7 x 8 ) (y 7 y 8 ) =1

где x 1 , x 2 ,…, x 8, у 1 2 ,…,у 8 - логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.

Решение . Все уравнения, включенные в систему, однотипны, и в каждое уравнение включено четыре переменных. Зная x1 и y1, можем найти все возможные значения x2 и y2, удовлетворяющие первому уравнению. Рассуждая аналогичным образом, из известных x2 и y2можем найти x3, y3, удовлетворяющее второму уравнению. То есть, зная пару (x1 , y1) и определив значение пары (x2 , y2) , мы найдем пару (x3 , y3 ), которая, в свою очередь, приведет к паре (x4 , y4 ) и так далее.

Найдем все решения первого уравнения. Это можно сделать двумя способами: построить таблицу истинности, через рассуждения и применение законов логики.

Таблица истинности:

x 1 y 1

x 2 y 2

(x 1 y 1 ) (x 2 y 2 )

(x 1 x 2 )

(y 1 y 2 )

(x 1 x 2 ) (y 1 y 2 )

Построение таблицы истинности трудоемко и неэффективно по времени, поэтому применяем второй способ - логические рассуждения. Произведение равно 1 тогда и только тогда, когда каждый множитель равен 1.

(x 1 y 1 ) (x 2 y 2 ))=1

(x 1 x 2 ) =1

(y 1 y 2 ) =1

Рассмотрим первое уравнение. Следование равно 1, когда 0 0, 0 1, 1 1, значит (x1 y1)=0 при (01), (10), то пара (x 2 y 2 ) может быть любой (00), (01), (10), (11), а при (x1 y1)=1, то есть (00) и (11) пара (x2 y2)=1 принимает такие же значения (00) и (11). Исключим из этого решения те пары, для которых ложны второе и третье уравнения, то есть x1=1, x2=0, y1=1, y2=0.

(x 1 , y 1 )

(x 2 , y 2 )

Общее количество пар 1+1+1+22=25

2) (23.160 Поляков К.Ю.) Сколько различных решений имеет система логических уравнений

(x 1 (x 2 y 2 )) (y 1 y 2 ) = 1

(x 2 (x 3 y 3 )) (y 2 y 3 ) = 1

...

( x 6 ( x 7 y 7 )) ( y 6 y 7 ) = 1

x 7 y 7 = 1

Решение. 1) Уравнения однотипные, поэтому методом рассуждения найдем всевозможные пары (x1,y1), (x2,y2) первого уравнения.

(x 1 (x 2 y 2 ))=1

(y 1 y 2 ) = 1

Решением второго уравнения являются пары (00), (01), (11).

Найдем решения первого уравнения. Если x1=0, то x2 , y2 - любые, если x1=1, то x2 , y2 принимает значение (11).

Составим связи между парами (x1 , y1) и (x2 , y2).

(x 1 , y 1 )

(x 2 , y 2 )

Составим таблицу для вычисления количества пар на каждом этапе.

0

Учитывая решения последнего уравнения x 7 y 7 = 1, исключим пару (10). Находим общее число решений 1+7+0+34=42

3)(23.180) Сколько различных решений имеет система логических уравнений

(x 1 x 2 ) (x 3 x 4 ) = 1

(x 3 x 4 ) (x 5 x 6 ) = 1

(x 5 x 6 ) (x 7 x 8 ) = 1

(x 7 x 8 ) (x 9 x 10 ) = 1

x 1 x 3 x 5 x 7 x 9 = 1

Решение. 1) Уравнения однотипные, поэтому методом рассуждения найдем всевозможные пары (x1,x2), (x3,x4) первого уравнения.

(x 1 x 2 ) (x 3 x 4 ) = 1

Исключим из решения пары, которые в следовании дают 0 (1 0), это пары (01, 00, 11) и (10).

Составим связи между парами (x1,x2), (x3,x4)

Поделиться