Теорема о целых и рациональных корнях многочлена. Рациональные корни многочлена

Вопрос о нахождении рациональных корней многочлена f (x )Q [x ] (с рациональными коэффициентами) сводится к вопросу об отыскании рациональных корней многочленов k f (x )Z [x ] (с целыми коэффициентами). Здесь число k является наименьшим общим кратным знаменателей коэффициентов данного многочлена.

Необходимые, но не достаточные условия существования рациональных корней многочлена с целыми коэффициентами дает следующая теорема.

Теорема 6.1 (о рациональных корнях многочлена с целыми коэффициентами). Если рациональный корень многочлена f (x ) = a n x n + + …+ a 1 x + a 0 с целыми коэффициентами, причем (p , q ) = 1, то числитель дроби p является делителем свободного члена а 0 , а знаменатель q является делителем старшего коэффициента а 0 .

Теорема 6.2. Если Q ( где (p , q ) = 1) является рациональным корнем многочлена f (x ) с целыми коэффициентами, то
целые числа.

Пример. Найтивсе рациональные корнимногочлена

f (x ) = 6 x 4 + x 3 + 2 x 2 4 х+ 1.

1. По теореме 6.1: если рациональный корень многочлена f (x ), (где(p , q ) = 1), то a 0 = 1 p , a n = 6 q . Поэтому p { 1}, q{1, 2, 3, 6}, значит,

.

2. Известно, что (следствие 5.3) число а является корнем многочлена f (x ) тогда и только тогда, когда f (x ) делится на (х – а ).

Следовательно, для проверки того, являются ли числа 1 и –1 корнями многочлена f (x ) можно воспользоваться схемой Горнера:

f (1) = 60,f (–1) = 120, поэтому 1 и –1 не являются корнями многочленаf (x ).

3. Чтобы отсеять часть оставшихся чисел
, воспользуемся теоремой 6.2. Если выраженияили
принимает целые значения для соответствующих значений числителяp и знаменателя q , то в соответствующих клетках таблицы (см. ниже) будем писать букву “ц”, в противном случае – “др”.

=

=

4. С помощью схемы Горнера проверяем, будут ли оставшиеся после отсеивания числа
корнямиf (x ). Вначале разделим f (x ) на (х – ).

В результате имеем: f (x ) = (х – )(6 x 3 + 4 x 2 + 4 х – 2) и – кореньf (x ). Частное q (x ) = 6 x 3 + 4 x 2 + 4 х – 2 разделим на (х + ).

Так как q (–) = 30, то (–) не является корнем многочленаq (x ), а значит и многочлена f (x ).

Наконец, разделим многочлен q (x ) = 6 x 3 + 4 x 2 + + 4 х – 2 на (х – ).

Получили: q () = 0, т.е.– кореньq (x ), а значит, – кореньf (x ). Таким образом, многочлен f (x ) имеет два рациональных корня: и.

Освобождение от алгебраической иррациональности в знаменателе дроби

В школьном курсе при решении некоторых типов задач на освобождение от иррациональности в знаменателе дроби достаточно домножить числитель и знаменатель дроби на число сопряженное знаменателю.

Примеры. 1.t =
.

Здесь в знаменателе срабатывает формула сокращенного умножения (разность квадратов), что позволяет освободиться от иррациональности в знаменателе.

2. Освободиться от иррациональности в знаменателе дроби

t =
. Выражение – неполный квадрат разности чисела =
иb = 1. Воспользовавшись формулой сокращенного умножения а 3 b 3 = (а + b ) · (a 2 ab + b 2 ), можно определить множитель m = (а + b ) =
+ 1, на который следует домножать числитель и знаменатель дробиt , чтобы избавиться от иррациональности в знаменателе дроби t . Таким образом,

В ситуациях, где формулы сокращенного умножения не работают, можно использовать другие приемы. Ниже будет сформулирована теорема, доказательство которой, в частности, позволяет найти алгоритм освобождения от иррациональности в знаменателе дроби в более сложных ситуациях.

Определение 6.1. Число z называется алгебраическим над полем F , если существует многочлен f (x ) F [x ], корнем которого является z , в противном случае число z называется трансцендентным над полем F .

Определение 6.2. Степенью алгебраического над полем F числа z называется степень неприводимого над полем F многочлена p (x )F [x ], корнем которого является число z .

Пример. Покажем, что числоz =
является алгебраическим над полемQ и найдем его степень.

Найдем неприводимый над полем Q многочлен p (х ), корнем которого является x =
. Возведем обе части равенстваx =
в четвертую степень, получимх 4 = 2 или х 4 2 = 0. Итак, p (х ) = х 4 2, а степень числа z равна deg p (х ) = 4.

Теорема 6.3 (об освобождении от алгебраической иррациональности в знаменателе дроби). Пусть z – алгебраическое число над полем F степени n . Выражение вида t = ,где f (x ), (x )F [x ], (z)0

единственным образом может быть представлено в виде:

t = с n -1 z n -1 + c n -2 z n -2 + … + c 1 z + c 0 , c i F .

Алгоритм освобождения от иррациональности в знаменателе дроби продемонстрируем на конкретном примере.

Пример. Освободиться от иррациональности в знаменателе дроби:

t =

1. Знаменателем дроби является значение многочлена (х ) = х 2 х +1 при х =
. В предыдущем примере показано, что
– алгебраическое число над полемQ степени 4, так как оно является корнем неприводимого над Q многочлена p (х ) = х 4 2.

2. Найдем линейное разложение НОД ((х ), p (x )) с помощью алгоритма Евклида.

_ x 4 – 2 | x 2 – x + 1

x 4 – x 3 + x 2 x 2 + x = q 1 (x )

_ x 3 – x 2 2

x 3 – x 2 + x

x 2 – x + 1 | – x –2 = r 1 (x )

x 2 + 2 x – x + 3 = q 2 (x )

_–3x + 1

–3 x – 6

_ – x –2 |7 = r 2

x –2 -x - =q 3 (x )

Итак, НОД ((х ), p (x )) = r 2 = 7. Найдем его линейное разложение.

Запишем последовательность Евклида, пользуясь обозначениями многочленов.

p (x ) = (x ) · q 1 (x ) + r 1 (x )
r 1 (x ) = p (x ) – (x ) · q 1 (x )

Данный многочлен имеет целые коэффициенты. Если целое число является корнем этого многочлена, то оно является делителем числа 16. Таким образом, если у данного многочлена есть целые корни, то это могут быть только числа ±1; ±2; ±4; ±8; ±16. Непосредственной проверкой убеждаемся, что число 2 является корнем этого многочлена, то есть x 3 – 5x 2 – 2x + 16 = (x – 2)Q (x ) , где Q (x ) − многочлен второй степени. Следовательно, многочлен разлагается на множители, один из которых (x – 2) . Для поиска вида многочлена Q (x ) воспользуемся так называемой схемой Горнера . Основным преимуществом этого метода является компактность записи и возможность быстрого деления многочлена на двучлен. По сути, схема Горнера является другой формой записи метода группировки, хотя, в отличие от последнего, является совершенно ненаглядной. Ответ (разложение на множители) тут получается сам собой, и мы не видим самого процесса его получения. Мы не будем заниматься строгим обоснованием схемы Горнера, а лишь покажем, как она работает.

1 −5 −2 16
2 1 −3 −8 0
В прямоугольную таблицу 2 × (n + 2) , где n − степень многочлена, (см. рис.) в верхнюю строчку выписываются подряд коэффициенты многочлена (левый верхний угол при этом оставляют свободным). В нижний левый угол записывают число − корень многочлена (или число x 0 , если мы хотим разделить на двучлен (x – x 0)), в нашем примере это число 2. Далее вся нижняя строчка таблицы заполняется по следующему правилу.

Во вторую клетку нижней строки «сносится» число из клетки над ней, то есть 1. Затем поступают так. Корень уравнения (число 2) умножают на последнее написанное число (1) и складывают результат с числом, которое стоит в верхнем ряду над следующей свободной клеткой, в нашем примере имеем:

Результат пишем в свободную клетку под −2. Далее поступаем аналогично:
Степень многочлена, полученного в результате деления, всегда на 1 меньше, чем степень исходного. Итак:

Пусть

- многочлен степени n ≥ 1 от действительной или комплексной переменной z с действительными или комплексными коэффициентами a i . Примем без доказательства следующую теорему.

Теорема 1

Уравнение P n (z) = 0 имеет хотя бы один корень.

Докажем следующую лемму.

Лемма 1

Пусть P n (z) - многочлен степени n , z 1 - корень уравнения:
P n (z 1) = 0 .
Тогда P n (z) можно представить единственным способом в виде:
P n (z) = (z - z 1) P n-1 (z) ,
где P n-1 (z) - многочлен степени n - 1 .

Доказательство

Для доказательства, применим теорему (см. Деление и умножение многочлена на многочлен уголком и столбиком), согласно которой для любых двух многочленов P n (z) и Q k (z) , степеней n и k , причем n ≥ k , существует единственное представление в виде:
P n (z) = P n-k (z) Q k (z) + U k-1 (z) ,
где P n-k (z) - многочлен степени n-k , U k-1 (z) - многочлен степени не выше k-1 .

Положим k = 1 , Q k (z) = z - z 1 , тогда
P n (z) = (z - z 1 ) P n-1 (z) + c ,
где c - постоянная. Подставим сюда z = z 1 и учтем, что P n (z 1) = 0 :
P n (z 1 ) = (z 1 - z 1 ) P n-1 (z 1 ) + c ;
0 = 0 + c .
Отсюда c = 0 . Тогда
P n ,
что и требовалось доказать.

Разложение многочлена на множители

Итак, на основании теоремы 1, многочлен P n (z) имеет хотя бы один корень. Обозначим его как z 1 , P n (z 1) = 0 . Тогда на основании леммы 1:
P n (z) = (z - z 1 ) P n-1 (z) .
Далее, если n > 1 , то многочлен P n-1 (z) также имеет хотя бы один корень, который обозначим как z 2 , P n-1 (z 2) = 0 . Тогда
P n-1 (z) = (z - z 2 ) P n-2 (z) ;
P n (z) = (z - z 1 )(z - z 2 ) P n-2 (z) .

Продолжая этот процесс, мы приходим к выводу, что существует n чисел z 1 , z 2 , ... , z n таких, что
P n (z) = (z - z 1 )(z - z 2 ) ... (z - z n ) P 0 (z) .
Но P 0 (z) - это постоянная. Приравнивая коэффициенты при z n , находим что она равна a n . В результате получаем формулу разложения многочлена на множители:
(1) P n (z) = a n (z - z 1 )(z - z 2 ) ... (z - z n ) .

Числа z i являются корнями многочлена P n (z) .

В общем случае не все z i , входящие в (1) , различны. Среди них могут оказаться одинаковые значения. Тогда разложение многочлена на множители (1) можно записать в виде:
(2) P n (z) = a n (z - z 1 ) n 1 (z - z 2 ) n 2 ... (z - z k ) n k ;
.
Здесь z i ≠ z j при i ≠ j . Если n i = 1 , то корень z i называется простым . Он входит в разложение на множители в виде (z-z i ) . Если n i > 1 , то корень z i называется кратным корнем кратности n i . Он входит в разложение на множители в виде произведения n i простых множителей: (z-z i )(z-z i ) ... (z-z i ) = (z-z i ) n i .

Многочлены с действительными коэффициентами

Лемма 2

Если - комплексный корень многочлена с действительными коэффициентами, , то комплексно сопряженное число также является корнем многочлена, .

Доказательство

Действительно, если , и коэффициенты многочлена - действительные числа, то .

Таким образом, комплексные корни входят в разложение на множителями парами со своими комплексно сопряженными значениями:
,
где , - действительные числа.
Тогда разложение (2) многочлена с действительными коэффициентами на множители можно представить в виде, в котором присутствуют только действительные постоянные:
(3) ;
.

Методы разложения многочлена на множители

С учетом сказанного выше, для разложения многочлена на множители, нужно найти все корни уравнения P n (z) = 0 и определить их кратность. Множители с комплексными корнями нужно сгруппировать с комплексно сопряженными. Тогда разложение определяется по формуле (3) .

Таким образом, метод разложения многочлена на множители заключается в следующем:
1. Находим корень z 1 уравнения P n (z 1) = 0 .
2.1. Если корень z 1 действительный, то в разложение добавляем множитель (z - z 1) (z - z 1) 1 :
.
1 (z) , начиная с пункта (1) , пока не найдем все корни.
2.2. Если корень комплексный, то и комплексно сопряженное число является корнем многочлена. Тогда в разложение входит множитель

,
где b 1 = - 2 x 1 , c 1 = x 1 2 + y 1 2 .
В этом случае, в разложение добавляем множитель (z 2 + b 1 z + c 1) и делим многочлен P n (z) на (z 2 + b 1 z + c 1) . В результате получаем многочлен степени n - 2 :
.
Далее повторяем процесс для многочлена P n-2 (z) , начиная с пункта (1) , пока не найдем все корни.

Нахождение корней многочлена

Главной задачей, при разложении многочлена на множители, является нахождение его корней. К сожалению, не всегда это можно сделать аналитически. Здесь мы разберем несколько случаев, когда можно найти корни многочлена аналитически.

Корни многочлена первой степени

Многочлен первой степени - это линейная функция. Она имеет один корень. Разложение имеет только один множитель, содержащий переменную z :
.

Корни многочлена второй степени

Чтобы найти корни многочлена второй степени, нужно решить квадратное уравнение:
P 2 (z) = a 2 z 2 + a 1 z + a 0 = 0 .
Если дискриминант , то уравнение имеет два действительных корня:
, .
Тогда разложение на множители имеет вид:
.
Если дискриминант D = 0 , то уравнение имеет один двукратный корень:
;
.
Если дискриминант D < 0 , то корни уравнения комплексные,
.

Многочлены степени выше второй

Существуют формулы для нахождения корней многочленов 3-ей и 4-ой степеней. Однако ими редко пользуются, поскольку они громоздкие. Формул для нахождения корней многочленов степени выше 4-ой нет. Несмотря на это, в некоторых случаях, удается разложить многочлен на множители.

Нахождение целых корней

Если известно, что многочлен, у которого коэффициенты - целые числа, имеет целый корень, то его можно найти, перебрав все возможные значения.

Лемма 3

Пусть многочлен
,
коэффициенты a i которого - целые числа, имеет целый корень z 1 . Тогда этот корень является делителем числа a 0 .

Доказательство

Перепишем уравнение P n (z 1) = 0 в виде:
.
Тогда - целое,
M z 1 = - a 0 .
Разделим на z 1 :
.
Поскольку M - целое, то и - целое. Что и требовалось доказать.

Поэтому, если коэффициенты многочлена - целые числа, то можно попытаться найти целые корни. Для этого нужно найти все делители свободного члена a 0 и, подстановкой в уравнение P n (z) = 0 , проверить, являются ли они корнями этого уравнения.
Примечание . Если коэффициенты многочлена - рациональные числа, , то умножая уравнение P n (z) = 0 на общий знаменатель чисел a i , получим уравнение для многочлена с целыми коэффициентами.

Нахождение рациональных корней

Если коэффициенты многочлена - целые числа и целых корней нет, то при a n ≠ 1 , можно попытаться найти рациональные корни. Для этого нужно сделать подстановку
z = y/a n
и умножить уравнение на a n n-1 . В результате мы получим уравнение для многочлена от переменной y с целыми коэффициентами.Далее ищем целые корни этого многочлена среди делителей свободного члена. Если мы нашли такой корень y i , то перейдя к переменной x , получаем рациональный корень
z i = y i /a n .

Полезные формулы

Приведем формулы, с помощью которых можно разложить многочлен на множители.





В более общем случае, чтобы разложить многочлен
P n (z) = z n - a 0 ,
где a 0 - комплексное, нужно найти все его корни, то есть решить уравнение:
z n = a 0 .
Это уравнение легко решается, если выразить a 0 через модуль r и аргумент φ :
.
Поскольку a 0 не изменится, если к аргументу прибавить 2 π , то представим a 0 в виде:
,
где k - целое. Тогда
;
.
Присваивая k значения k = 0, 1, 2, ... n-1 , получаем n корней многочлена. Тогда его разложение на множители имеет вид:
.

Биквадратный многочлен

Рассмотрим биквадратный многочлен:
.
Биквадратный многочлен можно разложить на множители, без нахождения корней.

При , имеем:

,
где .

Бикубический и многочлены, приводящиеся к квадратному

Рассмотрим многочлен:
.
Его корни определяются из уравнения:
.
Оно приводится к квадратному уравнению подстановкой t = z n :
a 2 n t 2 + a n t + a 0 = 0 .
Решив это уравнение, найдем его корни, t 1 , t 2 . После чего находим разложение в виде:
.
Далее методом, указанным выше, раскладываем на множители z n - t 1 и z n - t 2 . В заключении группируем множители, содержащие комплексно сопряженные корни.

Возвратные многочлены

Многочлен называется возвратным , если его коэффициенты симметричны:

Пример возвратного многочлена:
.

Если степень возвратного многочлена n - нечетна, то такой многочлен имеет корень z = -1 . Разделив такой многочлен на z + 1 , получим возвратный многочлен степени

Иррациона́льное число́ - это вещественное число , которое не является рациональным , то есть не может быть представлено в виде дроби , где - целые числа , . Иррациональное число может быть представлено в виде бесконечной непериодической десятичной дроби .

Множество иррациональных чисел обычно обозначается заглавной латинской буквой в полужирном начертании без заливки. Таким образом: , т.е. множество иррациональных чисел есть разность множеств вещественных и рациональных чисел.

О существовании иррациональных чисел, точнее отрезков , несоизмеримых с отрезком единичной длины, знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа .

Свойства

  • Всякое вещественное число может быть записано в виде бесконечной десятичной дроби , при этом иррациональные числа и только они записываются непериодическими бесконечными десятичными дробями.
  • Иррациональные числа определяют Дедекиндовы сечения в множестве рациональных чисел, у которых в нижнем классе нет наибольшего, а в верхнем нет наименьшего числа.
  • Каждое вещественное трансцендентное число является иррациональным.
  • Каждое иррациональное число является либо алгебраическим , либо трансцендентным.
  • Множество иррациональных чисел всюду плотно на числовой прямой: между любыми двумя числами имеется иррациональное число.
  • Порядок на множестве иррациональных чисел изоморфен порядку на множестве вещественных трансцендентных чисел.
  • Множество иррациональных чисел несчётно , является множеством второй категории .

Примеры

Иррациональные числа
- ζ(3) - √2 - √3 - √5 - - - - -

Иррациональными являются:

Примеры доказательства иррациональности

Корень из 2

Допустим противное: рационален , то есть представляется в виде несократимой дроби , где - целое число , а - натуральное число . Возведём предполагаемое равенство в квадрат:

.

Отсюда следует, что чётно, значит, чётно и . Пускай , где целое. Тогда

Следовательно, чётно, значит, чётно и . Мы получили, что и чётны, что противоречит несократимости дроби . Значит, исходное предположение было неверным, и - иррациональное число.

Двоичный логарифм числа 3

Допустим противное: рационален , то есть представляется в виде дроби , где и - целые числа . Поскольку , и могут быть выбраны положительными. Тогда

Но чётно, а нечётно. Получаем противоречие.

e

История

Концепция иррациональных чисел была неявным образом воспринята индийскими математиками в VII веке до нашей эры, когда Манава (ок. 750 г. до н. э. - ок. 690 г. до н. э.) выяснил, что квадратные корни некоторых натуральных чисел, таких как 2 и 61, не могут быть явно выражены.

Первое доказательство существования иррациональных чисел обычно приписывается Гиппасу из Метапонта (ок. 500 гг. до н. э.), пифагорейцу , который нашёл это доказательство, изучая длины сторон пентаграммы. Во времена пифагорейцев считалось, что существует единая единица длины, достаточно малая и неделимая, которая целое число раз входит в любой отрезок. Однако Гиппас обосновал, что не существует единой единицы длины, поскольку предположение о её существовании приводит к противоречию. Он показал, что если гипотенуза равнобедренного прямоугольного треугольника содержит целое число единичных отрезков, то это число должно быть одновременно и четным, и нечетным. Доказательство выглядело следующим образом:

  • Отношение длины гипотенузы к длине катета равнобедренного прямоугольного треугольника может быть выражено как a :b , где a и b выбраны наименьшими из возможных.
  • По теореме Пифагора: a ² = 2b ².
  • Так как a ² четное, a должно быть четным (так как квадрат нечетного числа был бы нечетным).
  • Поскольку a :b несократима, b обязано быть нечетным.
  • Так как a четное, обозначим a = 2y .
  • Тогда a ² = 4y ² = 2b ².
  • b ² = 2y ², следовательно b ² четное, тогда и b четно.
  • Однако было доказано, что b нечетное. Противоречие.

Греческие математики назвали это отношение несоизмеримых величин алогос (невыразимым), однако согласно легендам не воздали Гиппасу должного уважения. Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами «за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям». Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.


В этой статье мы начнем изучать рациональные числа . Здесь мы дадим определения рациональных чисел, дадим необходимые пояснения и приведем примеры рациональных чисел. После этого остановимся на том, как определить, является ли данное число рациональным или нет.

Навигация по странице.

Определение и примеры рациональных чисел

В этом пункте мы дадим несколько определений рациональных чисел. Несмотря на различия в формулировках, все эти определения имеют единый смысл: рациональные числа объединяют целые числа и дробные числа , подобно тому, как целые числа объединяют натуральные числа , противоположные им числа и число нуль. Иными словами, рациональные числа обобщают целые и дробные числа.

Начнем с определения рациональных чисел , которое воспринимается наиболее естественно.

Из озвученного определения следует, что рациональным числом является:

  • Любое натуральное число n . Действительно, можно представить любое натуральное число в виде обыкновенной дроби , например, 3=3/1 .
  • Любое целое число, в частности, число нуль. В самом деле, любое целое число можно записать в виде либо положительной обыкновенной дроби, либо в виде отрицательной обыкновенной дроби, либо как нуль. Например, 26=26/1 , .
  • Любая обыкновенная дробь (положительная или отрицательная). Это напрямую утверждается приведенным определением рациональных чисел.
  • Любое смешанное число . Действительно, всегда можно представить смешанное число в виде неправильной обыкновенной дроби. Например, и .
  • Любая конечная десятичная дробь или бесконечная периодическая дробь . Это так в силу того, что указанные десятичные дроби переводятся в обыкновенные дроби. К примеру, , а 0,(3)=1/3 .

Также понятно, что любая бесконечная непериодическая десятичная дробь НЕ является рациональным числом, так как она не может быть представлена в виде обыкновенной дроби.

Теперь мы можем с легкостью привести примеры рациональных чисел . Числа 4 , 903 , 100 321 – это рациональные числа, так как они натуральные. Целые числа 58 , −72 , 0 , −833 333 333 тоже являются примерами рациональных чисел. Обыкновенные дроби 4/9 , 99/3 , - это тоже примеры рациональных чисел. Рациональными числами являются и числа .

Из приведенных примеров видно, что существуют и положительные и отрицательные рациональные числа, а рациональное число нуль не является ни положительным, ни отрицательным.

Озвученное выше определение рациональных чисел можно сформулировать более краткой форме.

Определение.

Рациональными числами называют числа, которые можно записать в виде дроби z/n , где z – целое число, а n – натуральное число.

Докажем, что данное определение рациональных чисел равносильно предыдущему определению. Мы знаем, что можно рассматривать черту дроби как знак деления , тогда из свойств деления целых чисел и правил деления целых чисел следует справедливость следующих равенств и . Таким образом, , что и является доказательством.

Приведем примеры рациональных чисел, основываясь на данном определении. Числа −5 , 0 , 3 , и являются рациональными числами, так как они могут быть записаны в виде дробей с целым числителем и натуральным знаменателем вида и соответственно.

Определение рациональных чисел можно дать и в следующей формулировке.

Определение.

Рациональные числа – это числа, которые могут быть записаны в виде конечной или бесконечной периодической десятичной дроби.

Это определение также равносильно первому определению, так как всякой обыкновенной дроби соответствует конечная или периодическая десятичная дробь и обратно, а любому целому числу можно сопоставить десятичную дробь с нулями после запятой.

Например, числа 5 , 0 , −13 , представляют собой примеры рациональных чисел, так как их можно записать в виде следующих десятичных дробей 5,0 , 0,0 , −13,0 , 0,8 и −7,(18) .

Закончим теорию этого пункта следующими утверждениями:

  • целые и дробные числа (положительные и отрицательные) составляют множество рациональных чисел;
  • каждое рациональное число может быть представлено в виде дроби с целым числителем и натуральным знаменателем, а каждая такая дробь представляет собой некоторое рациональное число;
  • каждое рациональное число может быть представлено в виде конечной или бесконечной периодической десятичной дроби, а каждая такая дробь представляет собой некоторое рациональное число.

Является ли данное число рациональным?

В предыдущем пункте мы выяснили, что любое натуральное число, любое целое число, любая обыкновенная дробь, любое смешанное число, любая конечная десятичная дробь, а также любая периодическая десятичная дробь является рациональным числом. Это знание нам позволяет «узнавать» рациональные числа из множества написанных чисел.

Но как быть, если число задано в виде некоторого , или как , и т.п., как ответить на вопрос, является ли данное число рациональным? Во многих случаях ответить на него очень сложно. Укажем некоторые направления ходу мысли.

Если число задано в виде числового выражения, которое содержит лишь рациональные числа и знаки арифметических действий (+, −, · и:), то значение этого выражения представляет собой рациональное число. Это следует из того, как определены действия с рациональными числами . Например, выполнив все действия в выражении , мы получаем рациональное число 18 .

Иногда, после упрощения выражений и более сложного вида, появляется возможность определить, рационально ли заданное число.

Пойдем дальше. Число 2 является рациональным числом, так как любое натуральное число является рациональным. А как насчет числа ? Является ли оно рациональным? Оказывается, что нет, - не является рациональным числом, это иррациональное число (доказательство этого факта методом от противного приведено в учебнике по алгебре за 8 класс, указанном ниже в списке литературы). Также доказано, что квадратный корень из натурального числа является рациональным числом только в тех случаях, когда под корнем находится число, являющееся полным квадратом некоторого натурального числа. Например, и - рациональные числа, так как 81=9 2 и 1 024=32 2 , а числа и не являются рациональными, так как числа 7 и 199 не являются полными квадратами натуральных чисел.

А число рационально или нет? В данном случае несложно заметить, что , следовательно, данное число – рациональное. А является ли число рациональным? Доказано, что корень k-ой степени из целого числа является рациональным числом только тогда, когда число под знаком корня является k-ой степенью некоторого целого числа. Поэтому не является рациональным числом, так как не существует целого числа, пятая степень которого равна 121 .

Метод от противного позволяет доказывать, что логарифмы некоторых чисел по некоторым основаниям не являются рациональными числами. Для примера докажем, что - не рациональное число.

Предположим противное, то есть, допустим, что - рациональное число и его можно записать в виде обыкновенной дроби m/n . Тогда и дают следующие равенства: . Последнее равенство невозможно, так как в левой его части находится нечетное число 5 n , а в правой части – четное число 2 m . Следовательно, наше предположение неверно, таким образом, не является рациональным числом.

В заключение стоит особо отметить, что при выяснении рациональности или иррациональности чисел следует воздержаться от скоропостижных выводов.

Например, не стоит сразу утверждать, что произведение иррациональных чисел π и e является иррациональным числом, это «как бы очевидно», но не доказано. При этом возникает вопрос: «А с чего бы произведению быть рациональным числом»? А почему бы и нет, ведь можно привести пример иррациональных чисел, произведение которых дает рациональное число: .

Также неизвестно, являются ли числа и многие другие числа рациональными или не являются таковыми. Например, существуют иррациональные числа, иррациональная степень которых является рациональным числом. Для иллюстрации приведем степень вида , основание данной степени и показатель степени не являются рациональными числами, но , а 3 – рациональное число.

Список литературы.

  • Математика. 6 класс: учеб. для общеобразоват. учреждений / [Н. Я. Виленкин и др.]. - 22-е изд., испр. - М.: Мнемозина, 2008. - 288 с.: ил. ISBN 978-5-346-00897-2.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.
Поделиться