Open Library - открытая библиотека учебной информации. Структурный анализ и синтез механизмов Построение плана частот вращения

Механизмы с незамкнутой кинематической цепью собираются без натягов, поэтому они статически определимые, без избыточных связей (q =0).

Структурная группа – кинематическая цепь, присоединение которой к механизму не изменяет числа его степеней свободы и которая не распадается на более простые кинематические цепи с нулевой степенью свободы.

Первичный механизм (по И. И. Артоболевскому – механизм I класса, начальный механизм), представляет собой простейший двухзвенный механизм, состоящий из подвижного звена и стойки. Эти звенья образуют либо вращательную кинематическую пару (кривошип – стойка), либо поступательную пару (ползун – направляющие). Начальный механизм имеет одну степень подвижности. Число первичных механизмов равно числу степеней свободы механизма.

Для структурных групп Ассура, согласно определению и формуле Чебышева (при р вг =0, n = n пг и q п =0), справедливо равенство:

W пг =3n пг –2р нг =0, (1.5)

где W пг – число степеней свободы структурной (поводковой) группы относительно тех звеньев, к которым она присоединяется; n пг, р нг – число звеньев и низших пар структурной группы Ассура.

Рисунок 1.5 – Расчленение кривошипно-ползунного механизма на первичный механизм (4,А,1) и структурную группу (B,2,C,3,С")

Первая группа присоединяется к первичному механизму, каждая последующая – к полученному механизму, при этом нельзя присоединять группу к одному звену. Порядок структурной группы определяется числом элементов звеньев, которыми она присоединяется к имеющемуся механизму (т. е. числом её внешних кинематических пар).

Класс структурной группы (по И. И. Артоболевскому) определяется числом кинематических пар, образующих наиболее сложный замкнутый контур группы.



Класс механизма определяется наивысшим классом входящей в него структурной группы; при структурном анализе заданного механизма класс его зависит и от выбора первичных механизмов.

Структурный анализ заданного механизма следует проводить путем расчленения его на структурные группы и первичные механизмы в порядке, обратном образованию механизма. После отделения каждой группы степень подвижности механизма должна оставаться неизменной, а каждое звено и кинематическая пара могут входить только в одну структурную группу.

Структурный синтез плоских механизмов следует проводить, применяя метод Ассура, который обеспечивает статически-определимую плоскую схему механизма (q п =0), и формулу Малышева, поскольку вследствие неточностей изготовления плоский механизм в какой-то мере получается пространственным.

Для кривошипно-ползунного механизма, рассматриваемого как пространственный (рисунок 1.6), по формуле Малышева (1.2):

q =W +5p 5 +4р 4 +3р 3 +2р 2 +р 1 -6n =1+5×4-6×3=3

Рисунок 1.6 – Кривошипно-ползунный механизм с низшими парами

Для кривошипно-ползунного механизма, рассматриваемого как пространственный, в котором одну вращательную пару заменили на цилиндрическую двухподвижную пару, а другую – на сферическую трёхподвижную (рисунок 1.7), по формуле Малышева (1.2):

q =W +5p 5 +4р 4 +3р 3 +2р 2 +р 1 -6n =1+5×2+4×1+3×1-6×3=0

Рисунок 1.7 – Кривошипно-ползунный механизм без избыточных связей (статически определимый)

Такой же результат получим, поменяв местами цилиндрическую и сферическую пары (рисунок 1.8):

q =W +5p 5 +4р 4 +3р 3 +2р 2 +р 1 -6n =1+5×2+4×1+3×1-6×3=0

Рисунок 1.8 – Вариант исполнения кривошипно-ползунного механизма без избыточных связей (статически определимого)

Если установим в этом механизме две сферические пары вместо вращательных, получим механизм без избыточных связей, но с местной подвижностью (W м =1) – вращением шатуна вокруг своей оси (рисунок 1.9):

q =W +5p 5 +4р 4 +3р 3 +2р 2 +р 1 -6n =1+5×2+3×2-6×3= -1

q =W +5p 5 +4р 4 +3р 3 +2р 2 +р 1 -6n +W м =1+5×2+3×2-6×3+1=0

Рисунок 1.9 – Кривошипно-ползунный механизм с местной подвижностью

Раздел 4. Детали машин

Особенности проектирования изделий

Классификация изделий

Деталь – изделие, изготовленное из однородного материала, без применения сборочных операций, например: валик из одного куска металла; литой корпус; пластина из биметаллического листа и т.д.

Сборочная единица – изделие, составные части которого подлежат соединению между собой сборочными операциями (свинчиванием, сочленением, пайкой, опрессовкой и т.д.)

Узел – сборочная единица, которую можно собирать отдельно от других составных частей изделия или изделия в целом, выполняющая определенную функцию в изделиях одного назначения только совместно с другими составными частями. Характерным примером узлов являются опоры валов - подшипниковые узлы.

Имеют одни и те же методы исследования независимо от области их применения или функционального назначения.

Необходимо знать, что представляет собой структурная группа (группа Ассура), как определяется ее класс, порядок, вид. Желательно запомнить таблицу, показывающую сочетание звеньев и кинематических пар пятого класса в группе:

n группы 2 4 6 8
P 5 группы 3 6 9 12

Решение задачи начинается с определения числа степеней свободы кинематической цепи , положенной в основу данного механизма. В соответствии с числом степеней свободы назначается число начальных звеньев (или входных звеньев), после чего цепь становится механизмом .

После присоединения каждой группы Ассура должен получаться промежуточный механизм , с тем же числом степеней свободы, что и заданный. После присоединения последней группы должен получиться первоначально заданный механизм.

Обратите внимание на то, что класс механизма (а значит и методы его решения) определяются не только схемой механизма, но и тем, какое звено принято в качестве входного. При одной и той же схеме, но при разных входных звеньях, могут получаться разные по классу механизмы, а, значит, и методы их исследования будут различны.

Необходимо отметить также, что наличие в схеме механизма замкнутых контуров не определяет класс механизма, т.к. при разбивке на группы Ассура эти контуры могут распадаться. Но если какой-то контур сохранился в группе Ассура, то он определяет класс этой группы, и через класс группы – класс механизма.

В механизмах могут встретиться двойные и более сложные шарниры , поэтому надо быть внимательным при определении числа степеней свободы, а также при разбивке механизма на группы Аcсура.

Надо иметь в виду следующее:

  • при одной и той же схеме можно получить разные механизмы с точки зрения методов исследования, если задавать в качестве входных различные звенья;
  • из одних и тех же групп Ассура можно составить разные механизмы, с различным функциональным назначением;
  • структурная группа (группа Ассура) обладает одними и теми же свойствами и методами исследования независимо от того, в каком механизме она находится. Это очень важное свойство позволяет разрабатывать методы исследования только для групп Ассура, а не для каждого механизма из их огромного количества;
  • рассматриваемая структурная классификация применима не только для анализа существующих механизмов, но и для целенаправленного синтеза механизмов с предсказуемыми свойствами (путем присоединения к начальному или к начальным механизмам групп Ассура и дальнейшего их наслоения).

При наличии у механизма двух степеней свободы необходимо задать два начальных звена.

Если механизм имеет высшие кинематические пары IV класса, то прежде, чем разбивать механизм на структурные группы, надо произвести замену высших пар цепями с низшими парами , т.к. в группы Ассура входят только пары V класса.

Для последующего анализа целесообразно сравнить число степеней свободы заданного механизма и механизма, полученного после замены высших пар.

В механизме могут встретиться лишние степени свободы. Формула для определения числа степеней свободы дает правильный результат для общего случая, но в частном случае, при определенных размерах звеньев, фактическое число степеней свободы может отличаться от определенного по формуле.

Обычно наличие круглого ролика дает лишнюю степень свободы (его вращение вокруг собственной оси дает механизму дополнительную степень свободы, но это движение не влияет на характер работы остальных звеньев и всего механизма в целом). Поэтому число начальных механизмов надо задавать по действующему числу степеней свободы (W действ. =W расчетн. – W лишн.).

При замене высшей пары лишняя степень свободы автоматически исчезает (поэтому после замены высшей пары новое расчетное значение числа степеней свободы будет равно действующему числу степеней свободы). Это удобно для контроля правильности установления наличия или отсутствия лишних степеней свободы.

В некоторых случаях сложно определить класс групп Ассура, а, соответственно, и механизма по кинематической схеме, т.к. некоторые треугольники вырождаются в прямые линии, стороны контуров могут быть представлены ползунами и т.д. В результате довольно сложно определить наличие замкнутого контура в группе и число его сторон. В таком случае удобно воспользоваться построением структурной схемы механизма (или отдельной группы).

Структурная схема вычерчивается без масштаба, все звенья, входящие в три кинематические пары, изображаются в виде жестких треугольников, звенья, входящие в четыре кинематические пары, – в виде жестких четырехугольников и т.д., все ползуны условно заменяются шарнирами. Таким образом, формируется другой механизм с такой же структурой, но с более наглядной для решения данной задачи схемой. Естественно, что при дальнейшем исследовании рассматривается первоначально заданный механизм.

      Плоские рычажные механизмы. Достоинства и недостатки низших и высших кинематических пар. (, §8, п.1; , §2.2 - 2.3)

      Задачи структурного и метрического синтеза. (, §2.5)

      Критерий существования кривошипа. (, §11.1)

      Критерий положений ведомого звена. (, §11.2)

      Критерий максимального угла давления. (, §11.1 – 11.2)

      Критерий отношения средних скоростей ведомого звена. (, §11.4)

      Метрический синтез сложного механизма. (, §26)

      Плоские рычажные механизмы. Достоинства и недостатки низших и высших кинематических пар.

Плоским механизмом называют механизм, все точки которого двигаются в плоскостях, параллельных одной какой-либо плоскости. Такие механизмы нашли широкое распространение и используются во многих машинах, станках и приспособлениях. Звенья механизмов соединяются подвижно, образуя между собой низшие и высшие кинематические пары. Смысл этих понятий подробно изложен в лекции 1 (п.1.3). На рис.3.1,а изображены примеры этих пар, наиболее часто встречающиеся в механизмах. Здесь же (Рис.3.1,б) приведены схемы некоторых плоских механизмов, в состав которых входят низшие и высшие пары.

Механизмы с низшими кинематическими парами

Механизмы с высшими кинематическими парами

1 – кривошипно-ползунный механизм; 2 – кривошипно-коромысловый механизм; 3 – кривошипно-кулисный механизм; 4 – механизм с пневмо- или гидроцилиндром; 5 – грузозахватное приспособление клещевого типа; 6 –планетарный механизм редуктора в главной линии привода конвейера; 7 – кулачковый механизм

Низшим и высшим парам присущи определенные достоинства и определенные недостатки. Поэтому вопрос о том, какие пары «лучше» решается в зависимости от конкретных условий задачи.

Рассмотрим, например, низшие пары.

Их достоинства и недостатки обусловлены свойствами низших пар, а, именно, тем, что контакт между элементами пары осуществляется по поверхности 1 .

Отсюда вытекают преимущества низших пар :

1) удельное давление и износ низших пар (вследствие контакта по поверхности) меньше, чем аналогичный показатель у высших;

    изготовление элементов пар достаточно простое и точное ;

    не требуется дополнительных приспособлений, обеспечивающих замыкание элементов пар (в низших парах - обычно геометрическое замыкание; в высших парах – обычно силовое, т.е. за счет дополнительного прижатия)

В то же время, недостатками низших пар являются следующие:

    механизм, созданный на базе низших пар, имеет более сложную структуру , т.е. большее число звеньев и большее число кинематических пар;

    большие габаритные размеры механизма;

    повышенные затраты на преодоление трения в парах, а, значит, низкий КПД механизма

Высшие кинематические пары, в сравнении с низшими, имеют прямо противоположные свойства, т.е. не обладают преимуществами низших пар, зато лишены их недостатков.

      Задачи структурного и метрического синтеза .

Основной задачей структурного синтеза механизма является выбор его принципиальной схемы. Задача осуществляется в 2 этапа:

    Создание ряда принципиальных схем механизмов, удовлетворяющих требуемому движению входного и выходного звеньев.

    Выбор конкретной схемы, исходя из критериев (мощность привода, компактность, быстродействие, нагруженность кинематических пар, их износ, КПД механизма, стоимость изготовления, срок окупаемости и т.д.)

Удовлетворить требованиям всех критериев одновременно – задача невыполнимая. Поэтому ограничиваются анализом альтернативных схем механизма по критериям, принятым в качестве приоритетных.

В курсовом проекте по ТММ эта часть инженерной работы студентами не выполняется, т.к. принципиальная схема механизма задается по условию.

Алгоритм структурного синтеза механизма проиллюстрируем простым примером.

Пусть поставлена технологическая задача - спроектировать механизм для пошагового перемещения прямоугольных заготовок в проходной нагревательной печи. Данный механизм (Рис.3.2) может применяться в цехах горячей прокатки листа и называется механизмом «безударной» выдачи слябов.

Задача механизма – переместить лежащий в методической печи сляб на приемный рольганг стана горячей прокатки. В качестве машины-двигателя планируется использовать электродвигатель. Поэтому, за входное звено механизма принимаем кривошип, за выходное звено - ползун.

Нарисуем несколько возможных схем механизмов с входным кривошипом и выходным ползуном (Рис.3.3)

Все эти схемы удовлетворяют исходному условию по характеру движения входного и выходного звеньев. Какой же механизм выбрать?

Задачей структурного синтеза является анализ предложенных вариантов механизмов и выбор наиболее удачной схемы, с точки зрения технических и эксплуатационных характеристик. Для данного случая наиболее рациональной является схема 2. Она и получила практическое воплощение в ряде цехов прокатного производства, как структурная схема «Механизма безударной выдачи слябов».

Задачей метрического синтеза (для выбранной принципиальной схемы) является определение длин звеньев механизма, при которых удовлетворяются критерии метрического синтеза (критерий существования кривошипа, критерий положений ведомых звеньев, критерий максимальных углов давления, критерий рационального использования мощности привода и др.).

Рассмотрим суть этих критериев более подробно.

      Критерий существования кривошипа.

Кривошипно-коромысловый механизм часто используется как самостоятельный, либо как часть более сложного механизма. Ведущим звеном этого механизма является кривошип, т.е. звено, выполняющее вращательное движение с углом поворота 360. Понятно, что с геометрической точки зрения, это возможно только при определенных соотношениях длин звеньев.

Определим эти соотношения.

Д
ано:
Принципиальная схема кривошипно-коромыслового механизма (Рис.3.4). Звено ОА = r – кривошип; звено АВ = l – шатун; звено СВ = R - коромысло; ОС = L – расстояние между неподвижными точками стойки.

Определить: соотношение размеров звеньев механизма, при котором кривошип ОА может выполнить полный оборот.

Эту задачу в литературе иногда называют «условием проворачиваемости» кривошипно-коромыслового механизма или «условием Грасгофа».

Решение.

Рассмотрим механизм ОАВС в крайних положениях (Рис.3.5), когда коромысло ВС временно останавливается, меняя направление движения. При этом СВ л – крайнее левое положение коромысла, СВ п – крайнее правое его положение.

Из Δ ОВ л С

(3.1)

(3.2)

Из Δ ОВ п С

(3.3)

Выполним преобразования:

(3.1)  (r+R) < L+ (3.4)

(3.2)  (r+L) < R+ (3.5)

Из (3.3), (3.4) и (3.5) следует первое условие:

Условие 1 .

В кривошипно-коромысловом механизме сумма длин кривошипа и любого другого звена всегда меньше суммы длин других звеньев .

Продолжим преобразования. Сложим выражения (3.3),(3.4) и (3.5) почленно. Получим:

(3.6)

Условие 2 .

В кривошипно-коромысловом механизме кривошип – самое короткое звено.

Выполнение этих 2-х условий гарантирует проворачиваемость механизма, т.е. возможность поворота кривошипа на 360.

      Критерий положений ведомого звена

Смысл критерия заключается в определении соотношений между длинами звеньев, при которых обеспечиваются заданные положения выходных звеньев (в данном случае заданные крайние положения).

Ориентируясь на схемы заданий к курсовому проекту, рассмотрим примеры расчета длин звеньев применительно к кривошипно-коромысловому и коромыслово-ползунному механизмам. Оба механизма являются частями главного исполнительного механизма качающегося конвейера.

Пример 1

Д
ано
: Кривошипно-коромысловый механизм (Рис.3.6); выходное звено – коромысло СВ; заданы размеры СВ=R,  л,  п, ОС=L.

Определить : длины звеньев ОА = r, АВ = , обеспечивающие углы  л,  п в крайних положениях коромысла СВ.

Решение .

Рассмотрим механизм в крайних положениях (Рис.3.6).

Применив теорему косинусов, получим:

Сложим почленно (3.7) + (3.8) и решим равенство относительно :

Вычтем почленно (3.8) - (3.7) и решим равенство относительно :

Система 2-х уравнений (3.7) - (3.8) содержит 6 независимых геометрических параметров. Это значит, что можно найти 2 любых параметра, если остальные 4 заданы (причем в любых комбинациях).

Так, например, в курсовом проекте:

задаются - r , L, л , п , а подлежат определению - , R .

Пример 2

Дано : Коромыслово-ползунный механизм (Рис.3.7); выходное звено – ползун; заданы размеры л = п = , S .

Определить : длину звена СВ = R , обеспечивающую перемещение ползуна на расстояние S .

Решение.

Из рис.3.7 следует:

(3.11)

Заметим, что выражение (3.11) справедливо для произвольного значения  В D .

      Критерий максимального угла давления

На рис.3.8 изображена кинематическая пара, образованная шатуном 1 (ведущее звено) и ползуном 2 (ведомое звено).

Угол давления в кинематической паре шатун-ползун – это уголмежду направлением скорости ползунаи направлением силы давления шатуна на ползун. Известно, что (при невесомом шатуне) эта сила давления будет направлена вдоль шатуна (если шатун криволинейный – то по прямой, соединяющей концевые шарниры звена).

У
гол давления имеет большое значение для работоспособности механизма и его КПД. Большие углы давления приводят к повышенной силе трения между ползуном и направляющей стойки. Это влияет на равномерность движения механизма, степень износа подшипников, а иногда приводит к полной остановке механизма вследствие заклинивания.

На рис.3.9 изображен ползун, входящий в кинематические пары с шатуном и стойкой. Силадавления шатуна на ползун, разложена на составляющиеи. Касательная составляющаяобеспечивает перемещение ползуна вдоль стойки и совершает положительную работу, т.е. является полезной движущей силой. Нормальная составляющая, направленная перпендикулярно, работу по перемещению ползуна не совершает. Напротив, именно эта сила нормального давления определяет величину силы трения между ползуном и стойкой.

Действительно, из условия равновесия сил в направлении нормали к направляющей получаем нормальную реакцию стойки = -. Далее, на основании закона Кулона, имеем. А отсюда следует, что с увеличениемвозрастает, а вместе с ней и
.

Следует иметь ввиду, что угол давления - не постоянная величина, а изменяется в зависимости от положений механизма.

Угол давления можно уменьшить, если увеличить размеры соответствующих звеньев механизма. При этом габаритные размеры самого механизма увеличиваются, что не всегда приемлемо.

Таким образом, оптимальным вариантом метрического синтеза является тот, когда угол давления в наиболее неблагоприятных положениях механизма достигает максимально допустимого значения, но не превышает его. При создании новых механизмов максимальный угол давления в паре шатун-ползун рекомендуется принимать равным  max = 3040.

Покажем на примере, как определяется длина звена по критерию «угол давления».

Пример .

На рис.3.10 изображен кривошипно-ползунный механизм с направляющей, смещенной относительно центра вращения кривошипа на величину эксцентриситета - е * . Заданы длина кривошипа ОА и максимальный угол давления в паре шатун-ползун - max .

Дано : ОА=r, max , е * .

Определить : длину шатуна, из условия, что при полном обороте кривошипа угол давленияне превысит max .

Решение .

Рассмотрим изменение угла давления в паре шатун-ползун при прямом и обратном движении ползуна. На рисунке сделаны обозначения:

- угол давления при прямом ходе;

- угол давления при обратном ходе.

Из геометрии следует:

(3.12)
(3.13)

Анализируя (3.12) и (3.13) , находим положения механизма, при которых значения углов давления максимальны:

и
при
(т.е. ОА - вертикально).

(3.14)
(3.15)

Учитывая, что
принимаем

Поэтому окончательно:
(3.16)

      Критерий отношения средних скоростей ведомого звена

Иногда при проектировании механизмов бывает важно, чтобы выходное звено на рабочем и на холостом ходу двигалось с различными средними скоростями. 1 В этом случае метрический синтез механизма выполняется с учетом коэффициента отношения средних скоростей.

Рассмотрим работу кривошипно-коромыслового механизма (рис. 3.11).

Стрелками на рисунке обозначены:

р.х.– рабочий ход ведомого звена (совершается полезная работа);

х.х. – холостой ход (полезная работа не совершается).

Предположим, что ведущее звено ОА вращается равномерно ( 1 =const).

Из рис. 3.11 видно, что
, т.е.

Коэффициент отношения средних скоростей ведомого звена:

(для реальных механизмов, типаконвейеров  = 1.1 …1.3)

. Это следует из соотношения

Для ведущего звена

Имея требуемое значение , находят угол, после чего на основании рис.3.11 определяют необходимые длины звеньев.

      Метрический синтез сложного механизма

Сложным механизмом условно будем называть механизм, в состав которого входят несколько структурных групп.

Пример такого механизма показан на рис.3.12. Структурно он состоит из первичного механизма и двух последовательно присоединенных к нему структурных групп.

Как и в случае простых механизмов, метрический синтез сложного механизма осуществляется с использованием рассмотренных выше или иных критериев. При этом вначале сложный механизм разбивается на более простые механизмы в соответствии с формулой строения. В нашем случае это механизмы ОАВС и СВД.

Метрический синтез сложного механизма выполняют в последовательности:

    синтез первого простого механизма;

    синтез второго простого механизма;

Для закрепления изложенного материала, рассмотрим последовательность операций по метрическому синтезу механизма качающегося конвейера из курсового проекта по ТММ. Предположим, что принципиальная схема механизма задана и изображена на рис.3.13.

    Выделяем простые механизмы: ОАВС и СДЕ.

    Используем критерий положений коромысла СВ.

Дано: .

    Используем критерий положений ползуна Е.

Дано:
.


Дано:
.

    Критерий отношения средних скоростей выходного звена

Дано : крайние положения механизма, угол

 направление вращения ведущего звена.

Вопросы для самоконтроля

      Какие механизмы в ТММ называют плоскими?

      Нарисуйте несколько принципиальных схем плоских механизмов. Покажите низшие и высшие кинематические пары, использованные в них.

      Укажите достоинства и недостатки низших и высших кинематических пар.

      Объясните смысл задачи структурного синтеза механизма. Что при этом задается, а что подлежит определению?

      Объясните смысл задачи метрического синтеза механизма. Что при этом задается, а что подлежит определению?

1. Структурное и кинематическое исследование плоско-рычажного механизма

1.1 Структурный анализ механизма

1.1.1 Наименование звеньев и их количество

Дана структурная схема механизма. Механизм предназначен для преобразования вращательного движения кривошипа 1 в возвратно-поступательное движение ползуна 5.

Для данного кривошипно-ползунного механизма (изображенного на 1 листе графического задания), наименование звеньев и их количество приведено в таблице 1.

Таблица 1

1.1.2 Кинематические пары и их классификации

Для данного кривошипно-ползунного механизма кинематические пары и их классификации приведены в таблице 2.


Таблица 2

Всего звеньев 6 из них подвижных n=5

1.1.3 Степень подвижности механизма

Число степеней свободы (степень подвижности) кривошипно-ползунного механизма определяется по формуле П.Л. Чебышева:

где n – число подвижных звеньев механизма;

P 1 – число одноподвижных кинематических пар.

Т.к. W=1 механизм имеет одно ведущее звено и это звено №1.

1.1.4 Разложение механизма на структурные группы (группы Ассура)

Проведенное разложение кривошипно-ползунного механизма на структурные группы (группы Ассура) приведено в таблице 3.


Таблица 3

Группа Эскиз группы Звенья составляющие группу КП в группе Степень подвижности Класс, порядок, модификация группы
внутренние внешние
Ведущая группа О 1 А 1–0 О 1 А W=1 1 кл.1 вид.
Группа Ассура О 2 АB 2–3 B 3 (2–3) А (2–1)О 2 (0–3) W=1 II кл., 2 пор., 3 модиф.
Группа Ассура О 3 DС 4–5 D 4 (4–5) C (2–4)D 5 (0–5) W=1 II кл., 2 пор., 2 модиф.

1.1.5 Структурная формула механизма (порядок сборки)

К механизму 1 класса, 1 вида состоящего из звеньев 0 и 1 присоединена группа Ассура II класса, 2 порядка, 3 модификации состоящая из звеньев 2 и 3. К этой группе присоединена группа Ассура II класса, 2 порядка, 2 модификации состоящая из звеньев 4 и 5.

1.2 Кинематический анализ механизма

Цель: определение положения звеньев и траектории движения их точек, определение скоростей и ускорений точек звеньев, а также определение угловых скоростей и угловых ускорений звеньев по заданному закону движения ведущего звена.


1.2.1 Графический метод кинематического анализа

Заключается в построении графиков перемещении, скорости и ускорения последнего звена механизма в функции от времени (построение кинематических диаграмм) и определение их истинных значений.

1.2.1.1 Построение планов положения механизма

Кинематический анализ начинаем с построения плана положения механизма. Для этого должны быть известны:

1) размеры звеньев механизма, м;

2) величина и направление угловой скорости ведущего звена

.

Размеры звеньев механизма равны:

Выбираем масштабный коэффициент длины:

Нулевым положением является крайнее нижнее положение ползуна 5 – начало преодоления силы F п.с.

Построенный план положения механизма представлен на листе №1 графической части курсового проекта.

Длина отрезков, изображающих звенья механизма на чертеже, будут равны:


1.2.1.2 Построение диаграммы перемещений

Диаграмма перемещений пятого звена является графическим изображением закона его движения.

Проводим оси координат (графическая часть, лист №1). По оси абсцисс откладываем отрезок

, представляющий собой в масштабе время Т(с) одного периода (время одного полного оборота выходного звена):

Масштабный коэффициент времени:

Откладываем перемещение выходного звена по оси ординат, принимаем за нулевое – крайнее нижнее положение ползуна. Масштабный коэффициент будет равен:

Построенная диаграмма представлена на листе №1 графической части курсового проекта.

1.2.1.3 Построение диаграммы скорости

Построение диаграммы скорости осуществляется методом графического дифференцирования диаграммы угла поворота (методом хорд).

Н 1 =25 мм – расстояние до полюса графического дифференцирования (Р 1).

Масштабный коэффициент диаграммы угловой скорости:


Построенная диаграмма скорости представлена на листе №1 графической части курсового проекта.

1.2.1.4 Построение диаграммы ускорения

Построение диаграммы ускорения осуществляется методом графического дифференцирования диаграммы угловой скорости.

Н 2 =15 мм – расстояние до полюса графического дифференцирования (Р 2).

Масштабный коэффициент диаграммы углового ускорения:

Построенная диаграмма ускорения представлена на листе №1 графической части курсового проекта.

Истинные значения перемещения, скорости и ускорения приведены в сводной таблице 4.

Таблица 4

№ положения l , м v , м/с a , м/с 2
0 0,00 0,00 14,56
1 0,07 1,02 6,48
2 0,15 0,99 -1,38
3 0,22 0,88 -0,63
4 0,29 0,92 1,64
5 0,36 1,11 2,97
6 0,46 1,33 1,95
7 0,56 1,34 -3,19
8 0,65 0,59 -28,31
9 0,62 -2,69 -35,90
10 0,29 -4,53 0,94
11 0,02 -1,20 19,41

1.2.2 Графоаналитический метод кинематического анализа

1.2.2.1 Построение плана скорости

Исходные данные:

Угловая скорость ведущего звена

1. Абсолютная скорость точки А 1 на конце ведущего звена 1

2. Масштабный коэффициент:

Длинна вектора скорости точки А.

Тема 1. Структура механизмов

Основные понятия

Механизмом называется система тел, предназначен­ная для преобразования движения одного или нескольких твердых тел в требуемые движения других твердых тел.

Машиной называется устройство, выполняющее механи­ческие движения для преобразования энергии, материалов и инфор­мации с целью замены или облегчения физического и умственного труда человека. В зависимости от основного назначения различают энергетические, технологические, транспортные и информационные машины. Энергетические машины предназначены для преобразования энергии. К ним относятся, например, электродви­гатели, двигатели внутреннего сгорания, турбины, электрогенера­торы. Технологические машины предназначены для преобразования обрабатываемого предмета, которое состоит в из­менении его размеров, форм, свойств или состояния. Транс­портные машины предназначены для перемещения людей и грузов. Информационные машины предназначены для получения и преобразования информации.

В состав машины обычно входят различные механизмы.

Всякий механизм состоит из отдельных твердых тел, называ­емых деталями. Деталь является такой частью машины, кото­рую изготовляют без сборочных операций. Детали могут быть прос­тыми (гайка, шпонка и т.п.) и сложными (коленчатый вал, корпус редуктора, станина станка и т.п.). Детали частично или пол­ностью объединяют в узлы. Узел представляет собой закончен­ную сборочную единицу, состоящую из ряда деталей, имеющих общее функциональное назначение (подшипник, муфта, редуктор и т.п.). Сложные узлы могут включать несколько узлов (подузлов), напри­мер, редуктор включает подшипники, валы с насаженными на них зубчатыми колесами и т.п. Одно или несколько жестко соединенных твердых тел, входящих в состав механизма, называется зве­ном.

В каждом механизме имеется стойка , т.е. звено непо-

движное или принимаемое за неподвижное. Из подвижных звеньев выделяют входные и выходные. Входным звеном назы­вается звено, которому сообщается движение, преобразуемое меха­низмом в требуемые движения других звеньев. Выходным звеном называется звено, совершающее движение, для выполнения которого предназначен механизм.

Кинематической парой называется соеди­нение двух соприкасающихся звеньев, допускающее их относительное движение.

Классификация кинематических пар. Кинематические цепи

По числу связей, наложенных кинематической парой на отно­сительное движение ее звеньев, все кинематические пары делятся на пять классов . Свободное тело (звено) в пространстве обладает шестью степенями свободы.



Таблица 1.1

Основные кинематические пары


Поверхности, линии и точки, по которым соприкасаются звенья, называются элементами кинематической пары. Различают низшие (1-5) пары, элементами которых являются поверхности, и высшие (6, 7) пары, элементами которых могут быть только линии или точки.

Кинематические цепи

Кинематической цепью называется система звеньев, связанных между собой кинематическими парами.

Замкнутая плоская цепь Незамкнутая пространственная цепь

Структурный синтез и анализ механизмов

Структурный синтез механизма состоит в проектировании его структурной схемы, под которой понимается схема механизма, ука­зывающая стойку, подвижные звенья, виды кинематических пар и их взаимное расположение.



Метод структурного синтеза механизмов, предложенный русским ученым Л.В.Ассуром в 1914 г., состоит в следующем: механизм мо­жет быть образован путем наслоения структурных групп к одному или нескольким начальным звеньям и стойке.

Структурной группой (группой Ассура) на­зывается кинематическая цепь, число степеней свободы которой равно нулю после присоединения ее внешними кинематическими па­рами к стойке и которая не распадается на более простые цепи, удовлетворяющие этому условию.

Принцип наслоения иллюстрируется на примере образования 6-звенного рычажного механизма (рис. 1.3).

- угол поворота кривошипа (обобщенная координата).

Для структурных групп плоских механизмов с низшими парами

, откуда ,

где W–число степеней свободы; n – число подвижных звеньев; Р n – число низших пар.

Этому соотношению удовлетворяют следующие сочетания (табл.1.2)

В роли одноподвижных па.р выступают низшие пары.

Таблица 1.2

n
P n

Простейшей является структурная группа, у которой n = 2 и P н = 3. Она называется структурной группой второго класса.

Порядок структурной группы определяется числом эле­ментов ее внешних кинематических пар, которыми она может присо­единяться к механизму. Все группы второго класса имеют второй порядок.

Структурные группы, у которых n = 4 и Р n = 6, могут быть третьего или четвертого класса (рис. 1.4)

Класс структурной группы в общем случае определяется числом кинематических пар в замкнутом контуре, образованном внутренними кинематическими парами.

Класс механизма определяется высшим классом структурной группы, входящей в его состав.

Порядок образования механизма записывается в виде формулы его строения. Для рассмотренного примера (рис.1.3):

механизм второго класса. Римскими циф­рами указывается класс структурных групп, а арабскими – номера звеньев, из которых они образованы. Здесь обе структурные груп­пы относятся ко второму классу, второму порядку, первому виду.

Поделиться