Функции ретикулярной формации. Особенности структурно-функциональной организации

Резюме: биологической основой внимания является ориентировочный рефлекс.

И.П.Павлов описал ориентировочный рефлекс как безусловный рефлекс, выступающий основой непроизвольного внимания. Сами же процессы внимания в его системе объясняются, прежде всего, за счет взаимодействия возбуждения и торможения, протекающих в коре больших полушарий мозга. Когда человек внимателен к чему-либо, это означает, что у него в коре головного мозга возникает очаг возбуждения. В это же время все остальные участки мозга находятся в состоянии торможения. Поэтому человек, сосредоточенный на чем-либо одном, может ничего другого в этот момент не замечать. Но эти представления о мозговых взаимоотношениях имеют слишком абстрактный вид. Чтобы в этом убедиться, стоит сравнить этот подход с подходом А.Р.Лурия.

Учение А.Р.Лурия. В учении А.Р.Лурия о мозговой локализации высших психических функций человека дана структурно-функциональная модель мозга, в которой каждая высшая психическая функция выполняется за счет совместной работы трех мозговых блоков (Лурия А.Р. Основы нейропсихологии. М., 1973). Первый блок (блок регуляции уровня общей и избирательной активации мозга) образован неспецифическими структурами ретикулярной формации ствола мозга, структурами среднего мозга, диэнцефальных отделов ствола, лимбической системы, медиобазальными отделами коры лобных и височных долей мозга. Второй блок (блок приема, переработки и хранения модально-специфической информации) образован основными анализаторными системами (зрительной, слуховой, кожно-кинестетической), корковые зоны которых расположены в задних отделах больших полушарий. Третий блок (блок программирования, регуляции и контроля за протеканием психической функции, обеспечивающий формирование мотивов деятельности и контроль за результатами деятельности посредством большого числа двусторонних связей с корковыми и подкорковыми структурами) образован моторными, премоторными и префронтальными отделами коры больших полушарий. При этом важна последовательность работы этих структур: на первом этапе происходит побуждение к деятельности, основой которой выступает, в том числе, активизация ретикулярной формации.

Роль ретикулярной формации. Способность настораживаться, реагируя иногда на очень незначительное изменение в окружающей среде, обеспечивается расположенными в больших полушариях мозга сетями нервных путей, соединяющих ретикулярную формацию (совокупность структур головного мозга, регулирующих уровень возбудимости) с разными участками коры больших полушарий. Нервные импульсы, идущие по этой сети, возникают вместе с сигналами от органов чувств и возбуждают кору, приводя ее в состояние готовности реагировать на ожидаемые в дальнейшем раздражения. Таким образом, ретикулярная формация с ее восходящими и нисходящими волокнами вместе с органами чувств обуславливает появление ориентировочного (или ориентировочно-исследовательский) рефлекса, являясь первичной физиологической основой внимания.



Еще в 1935 г. Ф.Бремер провел сравнение электроэнцефалограмм при двух типах перерезки ствола мозга: а) на уровне шейных позвонков (препарат, называемый «encephale isole» - нижние отделы ствола) и б) на уровне моста (препарат «cerveau isole» - верхние отделы ствола). В первом случае записи биоэлектрической активности не отличались от ЭЭГ нормальных животных, тогда как во втором случае в ЭЭГ постоянно присутствовали медленные волны большой амплитуды, характерные для состояния сна. В препаратах, называемых «cerveau isole», коры достигают только зрительные и обонятельные афферентные раздражения, поскольку сигналы, передаваемые другими черепномозговыми нервами (в частности, слуховым и тройничным), оказываются перерезанными. Отсюда Ф.Бремер сделал вывод, что, когда центральная нервная система лишается большей части стимуляции, исходящей из внешнего мира, наступает сон; соответственно поддержание состояния бодрствования является результатом активирующего воздействия, оказываемого ощущениями. Как показал затем Д.Линдсли, в этих случаях сигналы, вызываемые сенсорными раздражителями, продолжают доходить до коры, но электрические ответы коры на эти сигналы становятся лишь кратковременными и не вызывают стойких изменений. Это показало, что для возникновения стойких процессов возбуждения, характеризующих состояние бодрствования, одного притока сенсорных импульсов недостаточно, необходимо поддерживающее влияние активирующей ретикулярной системы.

Эти представления о процессах общей активации получили дальнейшее развитие в работах Г.Моруцци и Г.Мэгуна (Moruzzi G., Magoun H.W. Brain stem reticular formation and activation of the EEG // EEG and Clinical Neurophysiology. 1949, 1 - «Ретикулярная формация мозгового ствола и реакция активации в ЭЭГ»). Они провели эксперименты на основе электростимуляции мозга, выявившие функции неспецифической системы мозга – ретикулярной формации ствола мозга, относимой, наряду с лимбической системой, к «модулирующим» системам мозга. Основной функцией этих систем является регуляция функциональных состояний организма. Исследователи не выключали, а раздражали восходящую ретикулярную формацию имплантированными в нее электродами, показали, что такое раздражение ретикулярной формации приводит к пробуждению животного, а дальнейшее усиление этих раздражений - к возникновению выраженных эффективных реакций животного. Оказалось, что при раздражении ее электрическим током, происходит реакция активации, а при удалении этой структуры наступает кома. Эти структуры фактически ответственны за поддержание состояния бодрствования, причем степень их активности сама отчасти зависит от сенсорных влияний. Однако вопреки тому, что предполагал Бремер, активирующее влияние сенсорики проявляется не в форме прямой активации мозговой коры специфическими сигналами; она воздействует прежде всего на ретикулярную формацию, активность которой в свою очередь регулирует функциональное состояние коры, двигательных и вегетативных центров. Было установлено, что кортикальный сон препаратов «cerveau isole» Бремера вызывался не перерезкой специфических сенсорных путей к коре, а устранением влияний, оказываемых на нее ретикулярной формацией.

Также в опытах Д.Линдсли было выявлено, что раздражение стволовых ядер восходящей активирующей ретикулярной формации существенно понижает пороги чувствительности (иначе говоря, обостряют чувствительность) животного и позволяет осуществлять тонкие дифференцировки (например, дифференцировку изображения конуса от изображения треугольника), которые ранее были недоступны животному.

Нейроанатомия ретикулярной формации. Первоначально считалось, что к неспецифической системе мозга, которая выполняет задачу диффузной и генерализованной активации коры больших полушарий, относятся лишь сетевидные образования ствола мозга. Сейчас принято, что восходящая неспецифическая активирующая система занимает место от продолговатого мозга до зрительного бугра (таламуса).

Ретикулярная (от лат. слова reticulum – сеточка) формация состоит из многочисленных, не имеющих чётких границ групп нейронов. Подобное скопление нервных клеток по своему принципу организации напоминает нервные сети кишечнополостных. Их длинные и сильно ветвящиеся отростки формируют сети вокруг серого вещества спинного мозга и в дорсальной части ствола мозга. Впервые описана в середине XIX века, а название этой структуре дал О.Дейтерс. В ретикулярной формации ствола мозга выделяют свыше 100 ядер, которые на протяжении от спинного мозга до промежуточного мозга объединяются в три основные группы. 1) Срединная группа ядер концентрируется вокруг средней линии, в основном, в области шва моста и продолговатого мозга (ядра шва), которые образованы волокнами чувствительных проводящих путей, идущих от спинного мозга, ядер тройничного нерва и формирующих перекрест вдоль средней линии. 2) Медиальная группа ядер расположена по сторонам от предыдущей: к ней относятся медиальное крупноклеточное ядро, голубоватое место, нейроны центрального серого вещества среднего мозга и др. 3) Латеральная группа ядер находится латеральнее медиальной и включает латеральное ретикулярное ядро, парабрахиальные ядра и др.

Нейроны ретикулярной формации имеют различную величину: в срединных и медиальных ядрах находятся крупные нервные клетки, которые формируют длинные афферентные и эфферентные проводящие пути, а в латеральных - средние и мелкие нейроны, которые являются, в основном, ассоциативными нейронами.

Большинство нейронов ретикулярной формации в качестве передатчика нервного импульса используют пептиды (энкефалины, нейротензин и т.д.), но также широко представлены и моноамины. Ядра шва содержат серотонинергические нейроны, а голубоватого места – норадренергические.

Связи ретикулярной формации подразделяются на афферентные и эфферентные. На ее нейронах заканчиваются афферентные волокна: от спинного мозга, следующие по ответвлениям всех чувствительных проводящих путей, а также по спиноретикулярному тракту, от ядер черепных нервов в составе коллатералей ядерно-корковых, слухового и зрительных путей, от мозжечка в составе мозжечково-ретикулярного пути, от ядер таламуса, субталамуса и гипоталамуса, полосатого тела, структур лимбической системы, различных участков коры большого мозга, в том числе и по ответвлениям корково-спинномозговых и корково-ядерных путей. Нейроны ретикулярной формации имеют длинные тонкие эфферентные отростки, делящиеся на восходящую и нисходящую ветви, которые направляются к различным отделам головного и спинного мозга: моторным нейронам передних рогов спинного мозга и двигательным ядрам черепных нервов ствола мозга в составе ретикуло-ядерных и ретикуло-мозжечковых путей, мозжечку, красному ядру, чёрному веществу и ядрам пластинки крыши спинного мозга, ретикулярным ядрам таламуса, ядрам гипоталамуса, опосредованно, через ядра промежуточного мозга к полосатому телу, лимбической системе и новой коре.

С помощью ретикулярной формации двигательные и вегетативные ядра ствола мозга объединяются в функциональные центры, регулирующие многие сложные формы поведения: циркуляторную, дыхательную, кашлевую, глотательную, рвотную и др. Ретикулярная формация обеспечивает: 1) Поддержание состояния бодрствования. Увеличивая или уменьшая приток сенсорной информации к коре больших полушарий и подкорковым структурам, ретикулярная формация играет роль регулятора уровня сознания (цикл сон/бодрствование). Регулируя медиаторный обмен нейронов ретикулярной формации или модулируя активность их рецепторов с помощью определённых лекарственных препаратов, можно активизировать деятельность коры больших полушарий или наоборот - добиться сна. Например, кофеин, содержащийся в кофе или чае, стимулирует нервные клетки ретикулярной формации. Наоборот, среди психотропных средств (от греч. psyche - душа + tropos - направление) есть так называемые нейролептики, которые, блокируя ретикулярную формацию мозга и снижая скорость проведения возбуждения, действуют успокаивающим образом (подавляют бред, галлюцинации, чувство страха, агрессивность, психомоторное возбуждение). 2) Контроль рефлекторной деятельности путём стимуляции или торможения мотонейронов передних рогов серого вещества спинного мозга и двигательных ядер черепных нервов ствола мозга. 3) Объединение группы нейронов различных отделов головного и спинного мозга, благодаря чему возможно выполнение сложных рефлекторных актов: глотания, жевания, кашля, рвоты и т.д. 4) Обеспечение вегетативной регуляции за счёт координации эфферентных и афферентных сигналов в соответствующих центрах ствола мозга. Так, сосудодвигательный и дыхательный центры объединяют группы нейронов, ответственных за регуляцию дыхания и кровообращения. 5) Участие в эмоциональном восприятии чувствительных сигналов путём увеличения или уменьшения поступления афферентных импульсов к лимбической системе.

Избирательный характер протекания психических процессов, что характерно для внимания, обеспечивается лишь бодрственным состоянием коры с оптимальным уровнем возбудимости. Этот бодрственный уровень достигается за счет работы механизмов связи верхнего ствола с корой головного мозга и, прежде всего, с работой восходящей активирующей ретикулярной формацией. Именно эта восходящая активирующая ретикулярная формация доносит до коры, сохраняя ее в состоянии бодрствования, импульсы, связанные с обменными процессами организма, влечениями, с экстерорецепторами, доводящими информацию из внешнего мира. Сначала этот поток идет в верхние отделы ствола и ядра зрительного бугра, а затем – в кору головного мозга.

Обеспечение оптимального тонуса и бодрственного состояния коры осуществляется, однако, не только восходящей активирующей ретикулярной формацией. С ней тесно связан и аппарат нисходящей системы, волокна которой начинаются в коре головного мозга (прежде всего в медиальных и медиобазальных отделах лобных и височных долей) и направляются как к ядрам ствола, так и к двигательным ядрам спинного мозга. Работа нисходящей ретикулярной формации очень важна тем, что с ее помощью до ядер мозгового ствола доводятся те формы возбуждения, которые первоначально возникают в коре головного мозга и являются продуктом высших форм сознательной деятельности человека с ее сложными познавательными процессами и сложными программами прижизненно формируемых действий.

Взаимодействие обеих составных частей активирующей ретикулярной системы и обеспечивает сложнейшие формы саморегуляции активных состояний мозга, меняя их под воздействием как элементарных (биологических), так и сложных (социальных по происхождению) форм стимуляции.

Ретикулярная формация ствола мозга представляет собой комплекс нейронов, имеющих обширные связи с разными нервными центрами, друг с другом и корой полушарий. Она пролегает в ростральном направлении к таламусу. Рассмотрим далее ее особенности.

Функции ретикулярной формации

В задачи комплекса входит обработка сенсорной информации. Кроме этого, ретикулярная формация обеспечивает активизирующее воздействие на кору, осуществляя контроль деятельности спинного мозга. За счет этого регулируются тонус скелетных мышц, работа вегетативной и половой систем человека.

Механизм действия

Впервые он был выявлен Р. Гранитом. Ученый установил, что может влиять на активность γ-мотонейронов. Вследствие этого γ-эфференты (их аксоны) провоцируют сокращение веретен мускулатуры и, соответственно, повышение афферентной импульсации мышечных рецепторов. Поступающие в спинной мозг сигналы провоцируют возбуждение α-мотонейронов. Это и обуславливает тонус мускулатуры. Было установлено, что в реализации этой функции участвуют нейроны формации моста и продолговатого мозга. Их поведение диаметрально противоположно. Последние провоцируют активацию α-мотонейронов в мышцах-сгибателях и, соответственно, тормозят их в разгибателях. Нейроны моста действуют наоборот. Ретикулярная формация связана с мозжечком и корой, от которой поступает информация. Это позволяет сделать вывод, что она выступает в качестве коллектора неспецифического сенсорного потока, который, возможно, участвует в регуляции активности мускулатуры. Однако в настоящее время еще не выяснена необходимость формации, дублирующей задачи нейронов в красном и вестибулярных ядрах.

Структура

Ретикулярная формация образуется рассеянными клетками. Некоторые из них считаются жизненно важными образованиями. В частности, можно выделить центры:

  1. Дыхательный и сосудодвигательный. Они располагаются в продолговатом мозге.
  2. Координации взора. Он находится в среднем мозге.
  3. Голода, насыщения и терморегуляции. Они располагаются в промежуточном мозге.

В качестве ключевого тракта выступает ретикулоспинальный. Он проходит к нейронам в двигательных ядрах передних спинномозговых рогов и черепных нервов по стволу и к вставочным элементам нервной вегетативной системы. От них пролегают таламо-корковые волокна. Они обеспечивают активацию коры, которая необходима для восприятия специфических раздражителей. Эти таламо-корковые волокна заканчиваются во всех корковых слоях.

Научные наблюдения

В ходе исследований было выявлено, что ретикулярная формация обладает активизирующим воздействием на кору. Этот нейронный комплекс выступает в качестве своеобразного "энергетического центра". Без него нервные клетки коры, разные ее отделы, а также весь мозг в целом не смогут выполнять все свои многообразные сложные задачи. Комплекс нейронов непосредственно участвует в процессе регулирования сна и бодрствования. Результаты экспериментов позволили объяснить некоторые наблюдения хирургов. Так, в процессе операций на мозге могут быть сделаны разрезы в коре полушарий, удалена часть ткани. При этом пациент сознания не потеряет. Однако, если скальпелем будет задета , человек впадет в глубокий сон.

Специфика работы

Сегодня достаточно хорошо изучены специфические нервные каналы, по которым от органов чувств передается информация в мозг. Именно так кора узнает о характере раздражителя, действующего на организм. В соответствии с этим она посылает разные импульсы к системам и органам. Исследования показали, что от всех волокон, направленных от периферии к коре, отходят ответвления. Они заканчиваются на поверхности клеток формации. Внешнее раздражение любого характера оказывает на нее возбуждающее действие. В этот момент происходит своего рода "зарядка энергией". Выступая как мозговой центр, формация определяет степень работоспособности коры. Активизируя все отделы, она обеспечивает точный синтез и анализ многообразия информации, которая поступает в кору из внешнего мира.

Реакция на вещества организма

Ретикулярная формация чувствительна не только к нервным сигналам, но и к растворенным в крови соединениям. В частности, речь о сахаре, гормонах, углекислоте, кислороде. Особое значение среди этих веществ имеет адреналин. При эмоциональном перенапряжении - при гневе, страхе, состоянии аффекта, ярости - отмечается продолжительное возбуждение формации. Его поддерживает адреналин, усиленно выделяющийся в кровь. Активность комплекса во многом определяют и другие химические соединения. В первую очередь это углекислый газ и кислород. К примеру, если у человека во сне затруднено дыхание, то СО 2 начинает накапливаться в крови. Углекислота активизирует ретикулярную формацию, вследствие чего человек просыпается.

Заключение

Клинические исследования и экспериментальные данные, полученные в физиологических лабораториях, показали, что ретикулярная формация прямо связана с возникновением эмоций. Итоги изучения ее строения и задач, которые она реализует, широко применяются в психо- и нейрофармакологии. Было установлено, что вялость, апатия, сонливость или раздражительность, бессонница могут обуславливаться расстройством в работе ретикулярной формации. Этот нейронный комплекс также выполняет определенную роль в процессе возникновения многих патологий ЦНС.

Ретикулярная формация начинается в срединной части верхних шейных сегментов спинного мозга и продолжается в центральных отделах продолговатого мозга, моста, среднего и промежуточного мозга. Она представляет собой скопления нейронов (ядра) с многочисленными сильно ветвящимися отростками, идущими в разных направлениях и образующими густую сеть. Между нейронами ретикулярной формации образуется очень много синапсов. От всех поступающих в таламус, а затем в кору больших полушарий афферентных путей отходят многочисленные коллатерали к ретикулярной формации, чем и обеспечивается ее восходящая активирующая деятельность. Ретикулярная формация также получает импульсы из мозжечка, подкорковых ядер, лимбической системы, которые обеспечивают эмоционально-адаптивные поведенческие реакции, мотивационные формы поведения.

В ретикулярной формации человека выделяют 48 ядер. Наиболее крупным является гигантоклеточное ядро, которое содержит гигантские нейроны, отсутствующие в других ядрах. Важным свойством нейронов ретикулярной формации является их высокая химическая чувствительность к различным гуморальным факторам и фармакологическим веществам, особенно к анестезирующим препаратам и так называемым успокаивающим средствам.

В ретикулярной формации продолговатого мозга располагаются жизненно важные центры регуляции дыхания, сердечно-сосудистой системы, деятельности пищеварительного тракта, центры рефлекторных актов, связанных с вестибулярными и слуховыми нервами.

Установлено, что ретикулярная формация по восходящим нервным путям оказывает возбуждающее влияние на кору больших полушарий , а по нисходящим путям – возбуждающее или тормозящее действие на деятельность спинного мозга (рис. 84). Ретикулоспинальные влияния играют важную роль в координации простых и сложных движений, в реализации влияний психической сферы на осуществление сложной двигательной поведенческой деятельности человека.

Было обнаружено, что электрическое раздражение гигантоклеточного ядра ретикулярной формации вызывает неспецифическое торможение сгибательных и разгибательных рефлексов, осуществляемых мотонейронами спинного мозга. Влияние ретикулярной формации на мышечный тонус передается по двум ретикуло-спинальным путям: быстропроводящему и медленнопроводящему. Импульсы, поступающие по этим путям, повышают активность гамма-мотонейронов спинного мозга, что в свою очередь возбуждает альфа-мотонейроны, и мышечный тонус увеличивается. Ретикулярная формация может выступать не только в роли регулятора возбудимости мотонейронов спинного мозга, но и принимать участие в процессах, связанных с поддержанием позы и организацией целенаправленных движений.


Активность самой ретикулярной формации поддерживается непрерывным поступлением импульсов, идущих от рецепторов тела. Важная роль в поддержании ее активности принадлежит гуморальным факторам, по отношению к которым она обладает высокой чувствительностью.

Благодаря работам Х. Мегуна и Дж. Моруцци были открыты восходящие, активирующие влияния ретикулярной формации на кору больших полушарий (рис. 84, А). Обнаружено, что ретикулярная формация участвует в регуляции сна и бодрствования. Раздражение и возбуждение ее с помощью вживленных в мозг электродов вызывает пробуждение у спящих животных. Эта поведенческая реакция пробуждения сопровождается учащением ритма электроэнцефалограммы в обширных областях коры больших полушарий. У бодрствующего животного подобное раздражение повышало уровень корковой активности, усиливало внимание к внешним сигналам и улучшало их восприятие. Разрушение восходящих путей от ретикулярной формации приводит к глубокому сну у бодрствовавших животных и уменьшению частоты колебаний электроэнцефалограммы.

Ретикулярная формация может оказывать и тормозное влияние на кору больших полушарий. Оно имеет место в случае длительной и монотонной работы. Например, в производственных условиях при работе на конвейере или в спорте при прохождении длинных и сверхдлинных дистанций.

В электрических проявлениях деятельности мозга активирующие влияния ретикулярной формации проявляются в виде возникновения частой асинхронной активности (десинхронизация), а тормозящие влияния – в виде медленных ритмичных колебаний (синхронизация).

Большинство нейронов ретикулярной формации являются полисенсорными, т.е. отвечают на различные раздражения: световые, звуковые, тактильные и т.д. Эти нейроны имеют обширные рецептивные поля, большой латентный период и слабую воспроизводимость реакции, что сильно отличает их от нейронов специфических ядер. В связи с этим нейроны ретикулярной формации относят к неспецифическим. Точно также восходящие пути ретикулярной формации называют неспецифическими, т.к. они направлены к обширным областям коры больших полушарий в отличие от специфических проекционных путей от органов чувств, идущих в конкретные зоны коры.

Ретикулярной формации принадлежит важная роль в механизмах формирования условнорефлекторных реакций организма. Она повышает активность вегетативных нервных центров , функционируя совместно с симпатическим отделом вегетативной нервной системы. Введение адреналина повышает тонус ретикулярной формации, в результате чего усиливается ее активирующее влияние на кору больших полушарий. Адреналин, выделяемый мозговым веществом надпочечников при эмоциях, действуя на ретикулярную формацию, увеличивает и удлиняет эффекты возбуждения симпатической нервной системы.

Благодаря наличию кольцевых связей в ретикулярной формации происходит взаимодействие афферентных и эфферентных импульсов , возможна их продолжительная циркуляция по кругу. Вследствие этого поддерживается определённый уровень возбуждения самой ретикулярной формации, а она в свою очередь поддерживает тонус и готовность к деятельности различных отделов центральной нервной системы. Активность ретикулярной формации находится под регулирующим влиянием коры больших полушарий (рис. 84, Б).

5.16. Функции мозжечка

Мозжечок расположен позади и чуть выше продолговатого мозга и варолиева моста под большими полушариями. Это надсегментарная структура, появляющаяся на ранних этапах филогенеза хордовых животных. Степень развития мозжечка определяется сложностью среды обитания и передвижения организма. Наибольшего развития мозжечок достигает у человека в связи с прямохождением и усложнением движений при трудовой деятельности. В то же время мозжечок не является жизненно необходимым органом. У людей с врожденным отсутствием мозжечка не наблюдается каких-либо серьезных нарушений движений, препятствующих их жизнедеятельности.

Мозжечок человека состоит из непарной средней части – червя и расположенных по обе стороны от червя двух полушарий. Поверхность мозжечка покрыта серым веществом, толщиной 1–2,5 мм, образующим его кору. Под корой находится белое вещество, в котором группами располагается серое вещество, представляющее собой скопления тел нейронов – ядра мозжечка.

Мозжечок выполняет проводниковую, рефлекторную и интегративную функции. По афферентным спинно-мозжечковым путям в мозжечок поступают импульсы от рецепторов кожи, мышц и сухожилий. От вестибулярных ядер продолговатого мозга по вестибуло-мозжечковым путям в мозжечок поступает информация о положении тела. Кора больших полушарий также посылает афферентные пути в мозжечок, среди которых наиболее важными являются кортико-мосто-мозжечковый и кортико-ретикуло-мозжечковый пути.

Эфферентные пути от мозжечка идут к спинному и продолговатому мозгу, к ретикулярной формации, красным ядрам среднего мозга, к промежуточному мозгу, коре больших полушарий и к подкорковым ядрам.

Мозжечок оказывает рефлекторные влияния на различные двигательные и вегетативные функции. Главное его значение заключается в дополнении и коррекции деятельности остальных двигательных центров. Мозжечок участвует: 1) в регуляции позы и мышечного тонуса; 2) в коррекции медленных целенаправленных движений и координации их с рефлексами поддержания позы; 3) в координации быстрых целенаправленных движений, осуществляемых по команде из коры больших полушарий.

Зона коры червя мозжечка главным образом связана с регуляцией позы, равновесия и мышечного тонуса. Промежуточная околочервячная зона коры мозжечка принимает участие в координации медленных целенаправленных движений с рефлексами поддержания позы.

Боковые участки коры, расположенные на полушариях мозжечка, участвуют в осуществлении быстрых целенаправленных движений. К полушариям мозжечка от ассоциативных областей коры больших полушарий поступает информация о замысле движения по афферентному кортико-мосто-мозжечковому пути, насчитывающему около 20 млн. нервных волокон. В полушариях мозжечка и зубчатом ядре мозжечка информация о замысле движения преобразуется в программу движения, которая в таламусе промежуточного мозга объединяется с программой, поступающей от подкорковых ядер, и далее посылается в двигательные зоны коры больших полушарий. От коры больших полушарий по нисходящим путям передаются команды к мотонейронам спинного мозга и происходит осуществление движений.

Мозжечок вносит в выполнение движений необходимые поправки, обеспечивая точность, ловкость и координированность движений. При нарушении функций мозжечка возникают различные двигательные расстройства: атония, астения, астазия, атаксия, асинергия, дисметрия, адиадохокинез, дезэквилибрия (рис. 85).

Атония характеризуется резким ослаблением мышечного тонуса. Она обычно сопровождается астенией – слабостью и повышенной утомляемостью мышц. Астазия проявляется в утрате способности мышц к длительному тетаническому сокращению, вследствие чего конечности и голова непрерывно дрожат и качаются, т.е. наблюдается тремор. Атаксия характеризуется нарушением координации движений, походки и др. При атаксии ноги широко расставлены, движения избыточны, из-за которых больного как пьяного бросает из стороны в сторону.

Асинергия проявляется в нарушении взаимодействия между двигательными центрами различных мышц. При этом происходит как бы распад программы движения и целостное движение состоит не из одновременных содружественных актов, а распадается на ряд простых движений выполняемых последовательно. Асинергия сочетается с дисметрией , или утратой соразмерности движения. При дисметрии наблюдается несоответствие между интенсивностью мышечного сокращения и задачей выполняемого движения, движения становятся размашистыми и неупорядоченными в пространстве.

Адиадохокинез характеризуется нарушением координации быстрых целенаправленных движений. При этом человек не способен выполнять быструю последовательность движений, например поочередное сгибание и разгибание пальцев. При нарушении функций мозжечка также наблюдается дезэквилибрия, т.е. потеря способности сохранять равновесие.

Мозжечок участвует не только в регуляции движений, но и осуществляет контроль над вегетативными функциями, оказывая облегчающее или угнетающее влияние на деятельность сердечно-сосудистой, дыхательной, пищеварительной систем, на терморегуляцию. Влияния мозжечка осуществляются, по-видимому, благодаря его связям с ретикулярной формацией и гипоталамусом. Деятельность мозжечка протекает в непосредственной связи с корой больших полушарий и под её контролем.

5.17. Промежуточный мозг

Ретикулярная формация (лат. rete - сеть) представляет собой совокупность клеток, клеточных скоплений и нервных волокон, расположенных на всем протяжении ствола мозга (продолговатый мозг, мост, средний и промежуточный мозг) и в центральных отделах спинного мозга. Ретикулярная формация получает информацию от всех органов чувств, внутренних и других органов, оценивает ее, фильтрует и передает в лимбическую систему и кору большого мозга. Она регулирует уровень возбудимости и тонуса различных отделов центральной нервной системы, включая кору большого мозга, играет важную роль в сознании, мышлении, памяти, восприятии, эмоциях, сне, бодрствовании, вегетативных функциях, целенаправленных движениях, а также в механизмах формирования целостных реакций организма. Ретикулярная формация прежде всего выполняет функцию фильтра, который позволяет важным для организма сенсорным сигналам активировать кору мозга, но не пропускает привычные для него или повторяющиеся сигналы.

Ретикулярная формация представляет собой важный пункт на пути восходящей неспецифической соматосенсорной системы. Соматовисцеральные афференты идут в составе спиноретикулярного тракта (переднебоковой канатик), а также, возможно, в составе проприоспинальных (полисинаптических) путей и соответствующих путей от ядра спинального тройничного тракта. К ретикулярной формации приходят также пути от всех других афферентных черепномозговых нервов, т.е. практически от всех органов чувств. Дополнительная афферентация поступает от многих других отделов головного мозга - от моторных областей коры и сенсорных областей коры, от таламуса и гипоталамуса. Имеется также множество эфферентных связей - нисходящие к спинному мозгу и восходящие через неспецифические таламические ядра к коре головного мозга, гипоталамусу и лимбической системе. Большинство нейронов образует синапсы с двумя - тремя афферентами разного происхождения, такая полисенсорная конвергенция характерна для нейронов ретикулярной формации. Другими их свойствами являются большие рецептивные поля поверхности тела, часто билатеральные, длительный латентный период ответа на периферическую стимуляцию (вследствие мультисинаптического проведения), слабая воспроизводимость реакции (стохастические колебания числа потенциалов действия при повторной стимуляции). Все эти свойства противоположны свойствам лемнисковых нейронов в специфических ядрах соматосенсорной системы (рис.9-7 и рис. 5-13).

Функции ретикулярной формации изучены не полностью. Считается, что она участвует в следующих процессах:

1. в регуляции уровня сознания путем воздействия на активность корковых нейронов, например, участие в цикле сон / бодрствование,

2. в придании аффективно-эмоциональной окраски сенсорным стимулам, в том числе болевым сигналам, идущим по переднебоковому канатику, путем проведения афферентной информации к лимбической системе,

3. в вегетативных регулирующих функциях, в том числе во многих жизненно важных рефлексах (циркуляторных рефлексах и дыхательных рефлексах, рефлекторных актах глотания, кашля, чихания), при которых должны взаимно координироваться разные афферентные и эфферентные системы,

4. в целенаправленных движениях в качестве важного компонента двигательных центров ствола мозга.

Вопрс48. Сравнительная характеристика кабельного и сальтаторного видов проведения возбуждения

Нервная ткань обладает таким физиологическим свойством как проводимость, т. е. способностью проводить возбуждение по ходу нервного волокна в виде потенциала действия. Выделяют два вида проведения возбуждения в зависимости от строения нервного волокна. Различают два вида нервных волокон: мякотные (миелиновые) и безмякотные (немиелиновые). В безмякотных нервных волокнах наблюдается непрерывное распространение возбуждения, в основе которого лежат локальные или круговые токи. Как было сказано раньше, возбужденный электроотрицательный участок нервного волокна становится раздражителем для ближайшего невозбужденного электроположительного участка, который возбуждается (возбужденный участок как бы разряжается в сторону невозбужденного, следствием чего и являются появление локальных или круговых токов).

Миелин, прокрывающий нервное волокно, располагается сегментами, т. е. прерывисто. Миелин - хороший изолятор и, если бы он сплошным слоем покрывал нервное волокно, то возбуждение не распространялось бы. Миелиновая оболочка образуется клетками неврилеммы или шванновскими клетками. Плазматическая мембрана одной шванновской клетки обвертывает спирально в несколько слоев участок аксона, длиной в несколько сотых микрон. Между участками аксона, покрытого миелиновой оболочкой, остаются немиеленизированные зоны. Эти зоны называются перехватами Ранвье.

В волокнах, покрытых миелиновой оболочкой (мякотные волокна) возбуждение распространяется скачкообразно (сальтаторно), т. е. по перехватам Ранвье. Как было показано японским физиологом Тасаки, это создает своеобразную систему надежности для распространения возбуждения (разности потенциалов между возбужденным и невозбужденным участками волокна хватает на 5-6 перехватов Ранвье). В случае, если появится повреждение на небольшом участке волокна вследствие большого электрического поля распространение потенциала действия не нарушается. Как известно, начальная часть аксона в нервной клетке не покрыта миелиновой оболочкой. Именно в этом участке волокна и формируется потенциал действия. Возникает разность потенциалов между возбужденным и невозбужденным участком первого перехвата Ранвье, который под влиянием этого электрического поля возбуждается. Затем разность потенциалов формируется между возбужденным первым перехватом Ранвье и следующим, который перезаряжается и возбуждение приобретает распространяющий характер. Таким образом, в основе распространения возбуждения по мякотному волокну, как и безмякотному, лежат также местные (круговые, вихревые) токи. В перехватах Ранвье, находящихся друг от друга на расстоянии 2 мм, обнаружена большая плотность натриевых каналов - до 1200 на 1 мкм2, что значительно облегчает проведение возбуждения по нервному волокну. Прерывистое распространение возбуждения имеет некоторые преимущества по сравнению с непрерывным. Во-первых, скорость распространения возбуждения в волокнах, покрытых миелином, в 8-10 раз быстрее, чем в безмякотных. Во-вторых, на распространение возбуждения прерывистого типа затрачивается меньше энергии, оно более экономично, что, по всей вероятности, связано с большой плотностью натриевых каналов в перехватах Ранвье.

При распространении возбуждения по нервному волокну следует учитывать чисто физические или кабельные свойства проводника (нерв можно представить как кабель, помещенный в морскую воду). К кабельным свойствам относится, в частности, диаметр (поперечное сечение) проводника - чем толще нервное волокно (или больше поперечное сечение), тем меньше сопротивление. Следовательно, тем быстрее будет распространение возбуждения в виде импульса. Большое значение при возбуждении имеет также емкость и сопротивление мембраны. Так, если входное сопротивление мембраны больше, то и возбудимость в этом месте уменьшается. К кабельным свойствам относится также и электротон, оказывающий большое влияние на проводимость: чем выраженнее катэлектротон, тем быстрее проводится потенциал действия. Анэлектротонические изменения, напротив, ухудшают проведение возбуждения по нервной ткани.

В зависимости от скорости проведения возбуждения все нервные волокна делятся на три группы: А, В и С. Нервные волокна группы А - это высокоскоростные волокна, исключительно мякотного типа. В зависти от сечения нервного волокна скорость проведения возбуждения их колеблется в пределах 20-120 м/с. Различают А- волокна - самые скоростные - 70-120 м/с (диаметр волокна 12-20 мкм - a-волокна, их средняя скорость проведения возбуждения составляет 70-120 м/с; диаметр 8-12 мкм - b-волокна, проводящие возбуждение со скоростью 40-70 м/с; диаметр волокна 4-8 мкм - g-волокна, проводящие возбуждение со скоростью 20-40 м/с). Таким образом, чем толще проводник, тем больше скорость проведения возбуждения. Нервные волокна группы В представляют собой в основном безмякотные волокна, скорость распространения возбуждения которых составляет 6-20 м/с. Нервные волокна группы С представлены исключительно безмякотными волокнами вегетативной природы, скорость проведения возбуждения их составляет 0,5-6 м/с.

В физиологии имеется три закона распространения возбуждения.

Закон целостности нерва (закон непрерывности). Нерв проводит возбуждение только в том случае, если он сохраняет свою гистологическую и функциональную целостность. Любые отклонения этих показателей приводят к нарушению его проводимости. Действие местных анестетиков (новокаин) основано на том, что молекулы новокаина блокируют натриевые каналы, в результате чего прекращается натриевый ток и ткань теряет способность возбуждаться. Возбуждение при раздражении болевых рецепторов доходит до места, где действует новокаин и блокируется, вследствие чего болевые импульсы не достигают болевого центра.

Закон двустороннего проведения возбуждения. Нервное волокно способно проводить возбуждение от рецепторов к центрам и наоборот, от центров к периферическим образованиям. Такая закономерность была показана в классических исследования Кюне и Бабухина. Так, опыт Кюне заключался в следующем: если нарушить целостность мышцы между двумя ее участками, которые иннервируются двумя разветвлениями одного аксона, то электрическое раздражение любого из ответвлений аксона приводит к сокращению обеих частей мышцы.

Закон изолированного распространения возбуждения. Известно, что потенциал действия в волокнах, покрытых миелином, не перебрасывается с одного нервного волокна на другое благодаря хорошим изоляционным свойствам миелина. Такое изолированное проведение возбуждения обеспечивает мелкие и точные профессиональные сокращения мышц (игра на пианино, работа часового мастера и др.). Сразу после рождения достаточная миелинизация нервных волокон отсутствует и на любое раздражение новорожденные в большинстве случаев отвечают не локальными, а диффузными сокращениями большой группы мышц. Подобная же ответная реакция наблюдается во всех гладких мышцах, которые иннервируются безмякотными нервными волокнами, не обладающими изоляционнымитсвойствами.

Билет 15

1. Формы (фрагменты) афферентного синтеза: Доминирующая мотивация; Обстановочная афферентация; Пусковая афферентация. Роль ретикулярной формации.

2. Быстрые и медленные мышечные волокна.

Вопрос 1

АФФЕРЕНТНЫЙ СИНТЕЗ - (соединение, составление) - процесс сопоставления, отбора и синтеза многочисленных и разных по функциональному значению афферентаций, вызванных различными воздействиями на организм, происходящий в ц. н. с., на основе к-рого формируется цель действия.

А. с. согласно теории функциональной системы Анохина - первая, универсальная, стадия любого целенаправленного поведенческого акта (см. Функциональные системы).

А. с. включает обработку 4 основных видов афферентных возбуждений.

1. Мотивационное возбуждение отражает доминирующую потребность организма, к-рая возникает под влиянием метаболических, гормональных, а у человека - и социальных факторов Мотивация играет решающую роль в формировании цели действия. Специфически повышая реактивность корковых нейронов с помощью ориентировочно-исследовательской реакции , мотивационное возбуждение способствует обработке и активному отбору сенсорной информации, необходимой для построения целенаправленного поведения.

2. Обстановочная афферентация представляет собой воздействие на организм всей совокупности внешних факторов, составляющих конкретную обстановку, на фоне к-рой развертывается приспособительная деятельность. Обстановочная афферентация формируется не только постоянными компонентами обстановки, но и рядом последовательных афферентных воздействий на организм. Характерная особенность обстановочной афферентации состоит в том, что она придает специфику будущей поведенческой реакции, обеспечивая ее приспособительное значение только в данной обстановке.

Наиболее отчетливо роль обстановочной афферентации проявляется в опытах с условными рефлексами. В этих случаях на один и тот же условный раздражитель животное отвечает условной оборонительной реакцией в одной экспериментальной камере и условной пищевой - в другой (или в одной и той же экспериментальной камере утром животное отвечает пищевой реакцией, а вечером - оборонительной).



На стадии афферентного синтеза решаются вопросы “что делать?”, “как делать?”, “когда делать?”.

Пусковая афферентация

Представляет собой специальный раздражитель, собственно запускающий поведенческую реакцию. Значение пускового раздражителя состоит в том, что он призван обозначить момент начала поведенческой реакции.

Целенаправленное поведение может начинаться и без явного пускового стимула. Примерами таких реакций являются регулярно совершающиеся физиологические отправления (еда, сон, дефекация, мочеиспускание и др.), приуроченные к определенным периодам суток.

Афферентный синтез осуществляется на основе следующих нейрофизиологических механизмов:

1) механизмы восходящих активирующих влияний подкорковых образований на кору головного мозга. Это прежде всего, активирующие влияния гипоталамуса к лобным отделам коры, через передние ядра таламуса, что отражает мотивационные возбуждения. Аналогичным образом воздействуют другие лимбические системы. Вторыми по активирующему значению являются ретикулярные структуры среднего мозга и моста, которые обеспечивают соответствующий уровень бодрствования.

2) механизмы конвергенции возбуждений различного качества на нейронах коры и подкорковых структурах мозга. В частности, мультисенсорная конвергенция от поверхностей (зрительная, тактильная, слуховая, температурная и др.); мультибиологическая конвергенция, связанная с определенными состояниями (голод, боль и т.п.) и др.;

3) интеграцию мотивационных, обстановочных и пусковых афферентаций на нейронах коры мозга;

4) механизмы формирования доминанты, за счет которых подавляется текущая деятельность и удерживается вновь сформированная поведенческая реакция.

Роль ретикулярной формации

Ретикулярная формация характеризуется относительно малой возбудимостью. Эффекты ее раздражения появляются через большой латентный период, она медленно реагирует и остается активной в течение продолжительного времени после прекращения раздражения (длительное последействие). Ретикулярная формация облегчает или подавляет фазные движения и напряжение скелетных мышц, вызываемые мотонейронами спинного мозга, а также движения, вызванные с коры больших полушарий. Ретикулярная формация среднего и промежуточного мозга облегчает рефлекторные движения животных, раздражение промежуточного мозга тормозит двигательные рефлексы спинного мозга.

Боковые отделы ретикулярной формации варолиева моста и среднего мозга облегчают, а средние ее отделы в продолговатом мозге тормозят двигательные рефлексы. Облегчение и торможение зависят также от интенсивности и продолжительности раздражения ретикулярной формации. По гамма-нейронам она регулирует функции мышечных веретен, следовательно, обратную информацию из скелетных мышц. Она изменяет также возбудимость восходящих афферентных путей спинного мозга, что может снизить или прекратить постсинаптическое торможение. Тонические влияния ретикулярной формации вызывают ВПСП или ТПСП в мотонейронах спинного мозга. Она изменяет также передачу импульсов в мозговом стволе и одновременно с влиянием на скелетную мускулатуру вызывает сосудодвигательные, дыхательные, зрачковые и другие реакции.

Ретикулярная формация оказывает адаптационно-трофическое влияние на кору больших полушарий, подкорковые образования промежуточного мозга, мозжечок и спинной мозг. Существуют взаимные влияния этих отделов нервной системы, как возбуждающие, так и тормозящие. Она участвует в физиологических процессах сна и пробуждения, а также в эмоциях, в реакции напряжения («стресс») и др. Раздражение ретикулярной формации вызывает пробуждение спящих животных, а ее разрушение и выключение - глубокий сон у бодрствующих животных. Изучены взаимные влияния ретикулярной формации и коры больших полушарий.Установлено участие ретикулярной формации в образовании и протекании условных рефлексов

По симпатическим волокнам ретикулярная формация регулирует возбудимость и работоспособность скелетной мускулатуры, функциональное состояние нервной системы и органов чувств, оказывая на них адаптационно-трофическое влияние. Регуляция рефлексов позы и двигательных рефлексов, перемещающих тело, осуществляется по эфферентным гамма-волокнам иннервирующим проприоцепторы.

Ретикулярная формация регулирует вегетативные функции, деятельность внутренних органов. Она влияет на образование гормонов в гипофизе и других железах внутренней секреции и в ней концентрируются гормоны и медиаторы.

Афферентные волокна поступают в нее по симпатическим и блуждающим нервам. Частьклеток ретикулярной формации среднего мозга и варолнева моста возбуждается адреналином и норадреналином (адренореактивные системы) а другая часть, расположенная в промежуточном мозге, несколько выше среднего мозга, возбуждается ацетилхолином и его производными (холинореактивные системы). Адренореактивные системы среднего мозга и варолиева моста облегчают наступление двигательных рефлексов, а адренореактивные системы продолговатого мозга тормозят спинномозговые рефлексы. Адреналин возбуждает и холинореактивные системы. Предполагается, что действие ацетилхолина и его производных менее ограничено, чем действие адреналина, и охватывает многие области головного мозга. Действие ацетилхолина на ретикулярную формацию противоположно его периферическому влиянию на внутренние органы. Ретикулярную формацию среднего и продолговатого мозга возбуждает углекислота.

Гормоны и медиаторы действуют на функцию больших полушарий как непосредственно, так и посредством ретикулярной формации. Таким образом, ретикулярная формация мозгового ствола - подкорковый центр вегетативной нервной системы.

Вопрос 2 .

Поделиться