Ретроградный транспорт. Аксональный транспорт


В нейроне, как и в других клетках организма, постоянно происходят процессы распада молекул, органоидов, других компонентов клетки. Их необходимо постоянно обновлять. Нейроплазматический транспорт важен для обеспечения электрических и неэлектрических функций нейрона, для осуществления обратной связи между отростками и телом нейрона. При повреждении нервов необходима регенерация поврежденных участков и восстановление иннервации органов.

Разнообразные вещества транспортируются по отросткам нейрона с разной скоростью, в разных направлениях и с использованием разных механизмов транспорта. Выделяют два основных вида транспорта: прямой (антероградный) – от тела клетки по отросткам к их периферии и обратный (ретроградный) – по отросткам нейрона к телу клетки (табл. 1).

Табл. 1 Основные компоненты аксонного и дендритного транспорта в нейронах позвоночных (по данным разных авторов)

Компоненты и субкомпоненты транспорта

Скорость

мм/сутки

Что транспортируется

Морфологический субстрат транспорта

Прямой (антероградный) аксональный транспорт

Быстрый (Fast)
I 200- 500 Медиаторы и их предшественники, ферменты синтеза медиаторов, белки плазматической мембраны, мембранные органоиды, нейрогормоны, Синаптические пузырьки, цистерны гладкого ретикулума, нейросекреторные гранулы, цитоскелетная сеть
Промежуточный
II 50 - 100 Белки митохондрий, липиды мембран Митохондрии, цитоскелет
III 15 Миозиновые белки, Цитоскелет
Медленный (Slow)
IV SCb 2- 4 Актин, клатрин, актинсвязывающие белки, ферменты метаболизма нейрона, белки аксоплазмы
V SCa 0,2- 1 Белки нейрофиламентов, тубулин и фрагменты микротрубочек, ферменты аксоплазмы Цитоскелет (микротрубочки, микро- и нейрофиламенты), микротрабекулярная сеть

Прямой быстрый дендритный транспорт

I D 200- 400 Белки постсинапса, рецепторные комплексы, белки цитоплазмы и мембран дендрита и шипиков Цитоскелет, гладкий ретикулум, транспортные пузырьки

Обратный (ретроградный) транспорт

I R 100- 300 Отработанные лизосомы и митохондрии, ростовые и трофические факторы, вирусы. Мультивезикулярные и мультиламеллярные тела, цитоскелет, эндосомы

В осуществлении транспортных процессов в нейроне участвуют пять групп «моторных» белков, тесно связанных с цитоскелетной сетью. В их состав входят такие белки как кинезины, денеины и миозины.

В осуществлении транспортных процессов в нейроне участвуют пять групп т.н. «моторных» молекул (Рис. xx).

1-3 Группа. Кинезины

В составе этой группы выделяют три типа кинезиновых белков.

1. Группа. Конвекционный кинезин ( kinesin - I или KIF -5). Он был идентифицирован в нервной системе головоногих моллюсков и млекопитающих в 1985 году, а затем и в клетках других животных, включая низших эукариот. Он тесно связан с микротрубочками и является одним из самых главных транспортных белков клетки, осуществляя транспорт материалов (cargo) вдоль микротрубочек по направлению к ее плюс концу. С его помощью транспортируются в отростках нейронов митохондрии, лизосомы, цистерны эндоплазматического ретикулума, синаптические пузырьки, а также ряд немембранных комполнентов клетки (молекулы и-РНК, белки и фибриллы нейрофиламентов).

Состоит молекула кинезина -1 из двух тяжелых и двух легких полипептидных цепей. Из тяжелых и легких цепей каждая кодируются тремя генами. Легкие и тяжелые цепи могут комбинироваться в различных сочетаниях и, как полагают, могут, таким образом, формировать различные разновидности молекул кинезина – I, транспортирующие при этом разные компоненты внутри клетки.

2.Группа. Гетеродимерный кинезин, (кинезин - II , kinesin-II, KIF – 3C).

Свое название он получил из-за наличия трех моторных доменов в структуре молекулы. В нервных и сенсорных клетках позвоночных и беспозвоночных животных (например: в фоторецепторах позвоночных или в хеморецепторных клетках С. elegans) этот белок связан с работой ресничек и жгутиков, осуществляя транспорт крупных молекулярных комплексов вдоль их аксонемальной оси (IFT – intraflagellar transport) В аксонах нервных клеток он выполняет транспортную функцию, перемещая синаптические пузырьки и ферментные комплексы (холинэстеразу), участвующие в работе синапсов.

Одной из форм кинезина II типа является т.н. гомодимерный кинезин (Osm 3, KIF-17) Найден только у многоклеточных (метазоиных) животных. Также как и гетеродимерный кинезин II, он является важнейшей составляющей ресничек хеморецептивных клеток. В нейронах ЦНС млекопитающих эта форма кинезина участвует в транспорте по дендритам пузырьков, содержащих NMDA – синаптические рецепторы. Участие гомодимерного кинезина в IFT - транспорте обсуждается.

3 Группа. Мономерный кинезин (UNC -104, KIF -1A, Klp-53D, kinesin-73) Эта форма транспортных белков была обнаружена в нервной системе C . elegans, где ее мутантная форма вызывала паралич транспорта синаптических пузырьков по аксонам моторных нейронов. Особенностью этой транспортной молекулы является преобладающая мономерная форма этого белка, тогда как другие формы кинезина (как отмечено выше, являются димерами или тетрамерами). Обнаруженный у многих животных (C. elegans – Unc104, дрозофила – Klp53 D , kinesin -73 мышь – KIF -1А, KIF -1В, человек - GAKIN) он принимает участие в транспорте синаптических пузырьков, мембранных белков, связанных с формированием клеточных контактов.

Показано, что в результате альтернативного сплайсинга гена KIF -1B кинезина образуются две изоформы: KIF-1 Bα, участвующая в транспорте по отросткам митохондрий и KIF -1Bβ, транспортирующая синаптические пузырьки в аксонную терминаль.

Еще раз необходимо подчеркнуть, что все формы кинезинов участвуют в транспорте к плюс концу микротрубочек (антероградный, прямой транспорт)

Табдица. Некоторые молекулярные и функциональные характеристики кинезинов в нервной ткани (по N. Hirokava, 1997)

Тип молекулы Мол.вес Вторичная структура Направление транспорта и скорость Специфичность экспрессии Транспортируемый материал
KIF -1А 192 мономер + конец, 1,5 мкм/сек нейроспецифичен Предшественники синаптических пузырьков
KIF -1В 130 мономер + конец, 0,66 мкм/сек повсеместно митохондрии
KIF 2 81 гомодимер + конец, 0,47 мкм/сек Пузырьки, отделяющиеся от предсшественников син. пузырьков
KIF3A 80 Гетеродимер с KIF3B +конец, 0, 3 мкм/сек Пузырьки (90-180нм), от предшественников
KIF3B 85 Гетеродимер с KIF3A +конец, 0, 3 мкм/сек Обычен в нейронах, но экспремсируется повсеместно Пузырьки (90-180нм), от предшественников синаптических пузырьков
KIF4 140 Гомодимер, амино концевой моторный домен + конец, 0,2 мкм/сек Повсеместно, но в раннем развитии, во взрослых нейронах слабо Пузырьки
KIF5
KIF 1C2 86 Гомодимер, карбоксил концевой моторный домен - конец, Нейроспецифичен Мультивезикулярные тела, дендритный транспорт

4 Группа Денеины.

Эти транспортные белки участвуют в транспорте по микротрубочкам к ее минус-концу (ретроградный, обратный транспорт). Присутствуют во многих транспортных процессах и движениях клеток, начиная от митоза и заканчивая миграцией нейробластов в развивающемся мозге.

Имеет довольно сложную структуру, представленную множеством субъединиц (цепей). Эти субъединицы взаимодействуют с различными ассоциированными с денеином белками, которые, в свою очередь, могут определять избирательный характер, выполняемых денеином функций в клетке. Так, белок лиссэнцефалин -1 (Lis-1) будучи ассоциированным с денеином, определяет его роль в митозе и движении ядра в клетках развивающегося мозга, но не в транспорте органоидов. Мутации или отсутствие этого белка в период раннего развития организма (пренатальный период) вызывает серьезные нарушения в формировании ЦНС и особенно коры полушарий, приводя в конечном итоге к– лиссэнцефалии (наследственное заболеванию внешне выражающееся в недоразвитии или полном отсутствии в больших полушариях извилин и борозд).

5 Группа. Миозины (myosin-Vs). Этот транспортный белок был впервые идентифицирован биохимически в мозге позвоночных как «миозиноподобный калмодулин связывающий белок». От мышечного миозина он отличается большой длинной шарнирной части молекулы, которая имеет дополнительную легкую цепь и присоединенных к ней пять молекул калмодулина – Са+2 связывающего белка.

Миозин V широко задействован у позвоночных и беспозвоночных животных в транспортных процессах в нервных клетках. В основном он участвует в обратном транспорте мембранных пузырьков, мультивезикулярных тел, отработанных органоидов и их компонентов, а также нейротрофических и нейроростовых субстанций и наконец вирусов.

Кинезины обеспечивают транспорт в обоих направлениях (прямой и обратный), но во всех случаях этот транспорт идет к «+ » – концу микротрубочки. Денеины участвуют в транспорте по микротрубочкам к ее «- » - концу. Миозины – это транспортные белки, которые, в основном, участвуют в обратном транспорте мембранных пузырьков, мультивезикулярных тел, отработанных органоидов и их компонентов, а также нейротрофических и нейроростовых субстанций и вирусов. Кроме того, миозины принимают участие и в прямом транспорте компонентов цитоскелета по отросткам и телу нейрона (например, с его помощью перемещаются короткие мобильные микротрубочки). Важную роль миозины играют в росте отростков и их ретракции в процессе развития нейронов и миграции клеток.

Механизмы аксонного и дендритного транспорта

Прямой аксональный транспорт осуществляют моторные молекулы, связанные с системой цитоскелета и плазматической мембраной. Моторная часть молекул кинезина или денеина связывается с микротрубочкой, а хвостовая ее часть – с транспортируемым материалом, с аксональной мембраной или с соседними элементами цитоскелета. В обеспечении транспорта по отросткам принимают участие и ряд вспомогательных белков (адапторов), ассоциированных с кинезином или денеином. Все процессы идут со значительной затратой энергии.

Обратный (ретроградный) транспорт.

В аксонах основным механизмом обратного транспорта является система денеиновых и миозиновых моторных белков. Морфологическим субстратом этого транспорта являются: в аксоне – мультивезикулярные тела и сигнальные эндосомы, в дендритах – мультивезикулярные и мультиламеллярные тела.

В дендритах обратный транспорт осуществляется молекулярными комплексами не только денеина, но и кинезина. Это связано с тем, что (как указывалось ранее) в проксимальных участках дендритов микротрубочки ориентированы во взаимопротивоположном направлении, а транспортировку молекул и органоидов к «+ » – концу микротрубочек осуществляют только кинезиновые комплексы. Как и в случае прямого транспорта, разные компоненты и вещества транспортируются ретроградно в разных нейронах с разной скоростью, и, по – видимому, разными способами.

Большую роль в транспортных процессах в нейроне играет гладкий эндоплазматический ретикулум. Показано, что по всей длине отростков нейрона распространяется непрерывная разветвленная сеть цистерн гладкого ретикулума. Концевые ветвления этой сети проникают в пресинаптические участки синапсов, где от них отшнуровываются синаптические пузырьки. Именно по его цистернам быстро транспортируются многие медиаторы и нейромодуляторы, нейросекреты, ферменты их синтеза и распада, ионы кальция и другие компоненты аксотока. Молекулярные механизмы этой разновидности транспорта пока не ясны.

Дендритный транспорт

Долгое время экспериментально подтвердить наличие транспорта в дендритах не удавалось из-за значительного объема синтеза белков собственно в дендритах. Только с появлением методики внутриклеточной инъекции меченых предшественников синтеза белка и других компонентов цитоплазмы, удалось показать, что в дендритах, также как и в аксонах, имеется транспорт. Скорость прямого и обратного транспорта, в дендритах сопоставима со скоростью прямого быстрого аксонального транспорта.

По дендритам транспортируются вещества, которые либо не транспортируются по аксонам, либо транспортируются в очень ограниченном количестве (например: ферменты распада медиаторов, компоненты постсинаптических утолщений, ганглиозиды (специфические гликолипиды нейрональных мембран), нейрогормоны и нейротрофические факторы).

Наличие одновременно прямого и обратного транспорта в отростках нейронов создает проблему их взаимодействия друг с другом. Направление транспортных потоков в нейроне зависит, как полагают, от баланса между прямым и обратным транспортом и этот баланс может быть самым различным.

Состояние цитоскелета нейрона и моторных комплексов сильно сказывается на общей морфологии его отростков. Показано, что в зависимости от того, какие компоненты цитоскелета или моторные молекулы активированы или не работают, форма, длина и толщина отростков сильно изменяется.

Как и в случае прямого транспорта, разные компоненты и вещества транспортируются ретроградно в разных нейронах с разной скоростью, и, по – видимому, разными способами.

Таблица. 4 Скорости ретроградного аксонного транспорта различных молекул в периферической нервной системе (по: Reynolds et al., 2000 с изменениями)

Транспортируемое вещество

Скорость транспорта

Популяции нейронов, где обнаружен транспорт

NGF (нейроростовой фактор)

2-5 мм/час

10-13 мм/час

Симпатические нейроны

Чувствительные нейроны спинно-мозгового ганглия

Фермент допамин-β- гидрокислаза

Седалищный нерв

Вторичные посредники для фосфорилирования тирозинкиназ рецепторов

28-57 мм/час

(8-16 мкм/сек)

Седалищный нерв

Таким образом, в нейронах существует хорошо развитый цитоскелет и связанная с ним эффективная система прямого и обратного транспорта по отросткам разнообразных материалов и субстанций.



5.2.5. АКСОННЫЙ ТРАНСПОРТ

Наличие у нейрона отростков, длина которых может достигать 1 м (например, аксоны, ин-нервирующие мускулатуру конечностей), со­здает серьезную проблему внутриклеточной связи между различными участками нейрона и ликвидации возможных повреждений его отростков. Основная масса веществ (струк­турных белков, ферментов, полисахаридов, липидов и др.) образуется в трофическом центре (теле) нейрона, расположенном пре­имущественно около ядра, а используются они в различных участках нейрона, включая его отростки. Хотя в аксонных окончаниях существуют синтез медиаторов, АТФ и по­вторное использование мембраны пузырьков после выделения медиатора, все же необхо­дима постоянная доставка ферментов и фраг­ментов мембран из тела клетки. Для транс­порта этих веществ (например, белков) путем диффузии на расстояние, равное максималь­ной длине аксона (около 1 м), потребовалось бы 50 лет! Для решения этой задачи эволю­ция сформировала специальный вид транс­порта в пределах отростков нейрона, кото­рый более хорошо изучен в аксонах и полу­чил название аксонного транспорта. С помо­щью этого процесса осуществляется трофи­ческое влияние не только в пределах различ­ных участков нейрона, но и на иннервируе-

мые клетки. В последнее время появились данные о существовании нейроплазматичес-кого транспорта в дендритах, который осу­ществляется из тела клетки со скоростью около 3 мм в сутки. Различают быстрый и медленный аксонный транспорт.

А. Быстрый аксонный транспорт идет в двух направлениях: от тела клетки до аксонных окончаний (антеградный транспорт, скорость 250-400 мм/сут) и в противоположном на­правлении (ретроградный транспорт, ско­рость 200-300 мм/сут). Посредством анте-градного транспорта в аксонные окончания доставляются везикулы, образующиеся в ап­парате Гольджи и содержащие гликопротеины мембран, ферменты, медиаторы, липиды и другие вещества. Посредством ретроградного транспорта в тело нейрона переносятся вези­кулы, содержащие остатки разрушенных структур, фрагменты мембран, ацетилхоли-нэстераза, неидентифицированные «сигналь­ные вещества», регулирующие синтез белка в соме клетки. В патологических условиях по аксону к телу клетки могут транспортировать­ся вирусы полиомиелита, герпеса, бешенства и столбнячный экзотоксин. Многие вещества, доставленные путем ретроградного транспор­та, подвергаются разрушению в лизосомах.

Быстрый аксонный транспорт осущест­вляется с помощью специальных структур­ных элементов нейрона: микротрубочек и микрофиламентов, часть которых представ­ляет собой актиновые нити (актин составляет 10-15 % белков нейрона). Для транспорта необходима энергия АТФ. Разрушение мик­ротрубочек (например, колхицином) и мик­рофиламентов (цитохолазином В), снижение уровня АТФ в аксоне более чем в 2 раза и па­дение концентрации Са 2+ блокируют аксон­ный транспорт.

Б. Медленный аксонный транспорт осу­ществляется только в антеградном направле­нии и представляет собой передвижение всего столба аксоплазмы. Он выявляется в опытах со сдавлением (перевязкой) аксона. При этом происходит увеличение диаметра аксона проксимальнее перетяжки в результа­те «наплыва гиалоплазмы» и утончение аксо­на за местом сдавления. Скорость медленно­го транспорта равна 1-2 мм/сут, что соответ­ствует скорости роста аксона в онтогенезе и при его регенерации после его повреждения. С помощью этого транспорта перемещаются образованные в эндоплазматической сети белки микротрубочек и микрофиламентов (тубулин, актин и др.), ферменты цитозоля, РНК, белки каналов, насосов и другие веще­ства. Медленный аксонный транспорт не на-

рушается при разрушении микротрубочек, но прекращается при отделении аксона от тела нейрона, что свидетельствует о разных меха­низмах быстрого и медленного аксонного транспорта.

В. Функциональная роль аксонного транс­порта. 1. Антеградный и ретроградный транс­порт белков и других веществ необходимы для поддержания структуры и функции аксо­на и его пресинаптических окончаний, а так­же для таких процессов, как аксонный рост и образование синаптических контактов.

2. Аксонный транспорт участвует в трофи­ческом влиянии нейрона на иннервируемую клетку, так как часть транспортируемых ве­ществ выделяется в синаптическую щель и действует на рецепторы постсинаптической мембраны и близлежащих участков мембра­ны иннервируемой клетки. Эти вещества участвуют в регуляции обмена веществ, про­цессов размножения и дифференцировки ин-нервируемых клеток, формируя их функцио­нальную специфику. Например, в опытах с перекрестной иннервацией быстрых и мед­ленных мышц показано, что свойства мышц меняются в зависимости от типа иннервиру-ющего нейрона, его нейротрофического воз­действия. Передатчики трофических влияний нейрона до сих пор точно не определены, важное значение в этом плане придается полипептидам и нуклеиновым кислотам.

3. Роль аксонного транспорта особенно ярко выявляется при повреждении нерва. Если нервное волокно на каком-либо участке прервано, его периферический отрезок, ли­шенный контакта с телом нейрона, подверга­ется разрушению, которое называется валле-ровской дегенерацией. В течение 2-3 сут на­ступает распад нейрофибрилл, митохондрий, миелина и синаптических окончаний. Надо отметить, что распаду подвергается участок волокна, снабжение которого кислородом и питательными веществами с кровотоком не прекращается. Считают, что решающим ме­ханизмом дегенерации является прекраще­ние аксонного транспорта веществ от тела клетки до синаптических окончаний.

4. Аксонный транспорт играет важную роль и при регенерации нервных волокон.

|
аксонный транспорт онлайн, аксонный транспорт минск
Аксо́нный тра́нспорт - это перемещение по аксону нервной клетки различного биологического материала.

Аксональные отростки нейронов отвечают за передачу потенциала действия от тела нейрона к синапсу. Также аксон представляет собой путь, по которому осуществляется транспорт необходимых биологических материалов между телом нейрона и синапсом, необходимый для функционирования нервной клетки. По аксону из области синтеза в теле нейрона транспортируются мембранные органеллы (митохондрии), различные везикулы, сигнальные молекулы, ростовые факторы, белковые комплексы, компоненты цитоскелета и даже Na+- и K+-каналы. Конечными пунктами этого транспорта служат определенные области аксона и синаптической бляшки. свою очередь, нейротрофические сигналы транспортируются из области синапса к телу клетки. Это выполняет роль обратной связи, сообщающей о состоянии иннервации мишени.

Длина аксона периферической нервной системы человека может превышать 1 м, а может быть и больше у крупных животных. Толщина большого мотонейрона человека составляет 15 мкм, что при длине в 1 м дает объём ~0,2 мм³, а это почти в 10000 раз больше объёма клетки печени. Это делает нейроны зависимыми от эффективного и координированного физического транспорта веществ и органелл по аксонам.

Величины длин и диаметров аксонов, а также количества материала, транспортируемого по ним, безусловно, говорят о возможности возникновения сбоев и ошибок в системе транспорта. Многие нейродегенеративные заболевания непосредственно связаны с нарушениями в работе этой системы.

  • 1 Основные особенности аксонной транспортной системы
  • 2 Классификация аксонного транспорта
  • 3 См. также
  • 4 Литература

Основные особенности аксонной транспортной системы

Упрощённо аксонный транспорт можно представить как систему, состоящую из нескольких элементов. неё входят груз, белки-моторы, осуществляющие транспорт, филаменты цитоскелета, или «рельсы», вдоль которых «моторы» способны передвигаться. Также необходимы белки-линкеры, связывающие белки-моторы с их грузом или другими клеточными структурами, и вспомогательные молекулы, запускающие и регулирующие транспорт.

Классификация аксонного транспорта

Белки цитоскелета доставляются из тела клетки, двигаясь по аксону со скоростью от 1 до 5 мм в сутки. Это медленный аксонный транспорт (похожий на него транспорт имеется и в дендритах). Многие ферменты и другие белки цитозоля также переносятся при помощи этого типа транспорта.

Нецитозольные материалы, которые необходимы в синапсе, такие как секретируемые белки и мембраносвязанные молекулы, двигаются по аксону с гораздо большей скоростью. Эти вещества переносятся из места их синтеза, эндоплазматического ретикулума, к аппарату Гольджи, который часто располагается у основания аксона. Затем эти молекулы, упакованные в мембранные пузырьки, переносятся вдоль рельсов-микротрубочек путём быстрого аксонного транспорта со скоростью до 400 мм в сутки. Таким образом по аксону транспортируются митохондрии, различные белки, включая нейропептиды (нейромедиаторы пептидной природы), непептидные нейромедиаторы.

Транспорт материалов от тела нейрона к синапсу называется антероградным, а в обратном направлении - ретроградным.

Транспорт по аксону на большие расстояния происходит с участием микротрубочек. Микротрубочки в аксоне обладают присущей им полярностью и ориентированны быстрорастущим (плюс-)концом к синапсу, а медленнорастущим (минус-) - к телу нейрона. Белки-моторы аксонного транспорта принадлежат к кинезиновому и динеиновому суперсемействам.

Кинезины являются, в основном, плюс-концевыми моторными белка́ми, транспортирующими такие грузы, как предшественники синаптических везикул и мембранные органеллы. Этот транспорт идет в направлению к синапсу (антероградно). Цитоплазматические динеины - это минус-концевые моторные белки, транспортирующие нейротрофные сигналы, эндосомы и другие грузы ретроградно к телу нейрона. Ретроградный транспорт осуществляется динеинами не эксклюзивно: обнаружены несколько кинезинов, перемещающихся в ретроградном направлении.

См. также

  • Валлерова дегенерация
  • Кинезин
  • Динеин
  • DISC1

Литература

  1. Duncan J.E., Goldstein L.S. The genetics of axonal transport and axonal transport disorders. // PLoS Genet. 2006 Sep 29;2(9):e124. PLoS Genetic, PMID 17009871.

аксонный транспорт минск, аксонный транспорт онлайн, аксонный транспорт тернополя, аксонный транспортный

Аксонный транспорт Информацию О

Особый интерес, с точки зрения физиологии ЦНС, имеет процесс внутриклеточного транс-порта, передачи информации, сигнала в аксоне нервной клетки. Диаметр аксона нервной клетки составляет всего несколько микронов. В то же время длина аксона достигает в отдельных случаях 1 м. Каким же образом обеспечивается постоянная и высокая скорость транспорта по аксону?

Для этого используется специальный аксонный транспортный механизм, который подразделяется на быстрый и медленный .

Во-первых, следует иметь в виду, что быстрый транспортный механизм является антеро-градным , т.е. направленным от тела клетки к аксону.

Во-вторых, основным “средством передвижения” для быстрого аксонного транспорта являются пузырьки (везикулы) и некоторые структурные образования клетки (например, митохондрии), которые содержат вещества, предназначенные для транспортировки. Такие частицы совершают короткие быстрые движения, что соответствует приблизительно 5 мкм с(-1). Быстрый аксонный транспорт требует значительной концентрации энергии АТФ.

В-третьих, медленный аксонный транспорт перемещает отдельные элементы цитоскелета: тубулин и актин. Например, тубулин как элемент цитоскелета, движется по аксону со скоростью около 1 мм сут(-1). Скорость медленного аксонного транспорта примерно равна скорости роста аксона.

Важное значение для понимания физиологии ЦНС имеют процессы регуляции воздействий на клеточную мембрану. Основным механизмом такой регуляции является изменение мембранного потенциала. Изменения мембранного потенциала осуществляются за счет воздействия соседних клеток или изменения внеклеточной концентрации ионов.

Наиболее значимым регулятором мембранного потенциала является внеклеточное вещество во взаимодействии со специфическими рецепторами на плазматической мембране. К таким внеклеточным веществам относятся синаптические медиаторы, которые передают информацию между нервными клетками.

Синаптические медиаторы представляют собой небольшие молекулы, выделяющиеся из нервных окончаний в области синапса. Достигая плазматической мембраны другой клетки, они запускают электрические сигналы или другие регуляторные механизмы (рис. 6).

Рис. 6. Схема выброса медиаторов и процессов, происходящих в синапе

Кроме того, во внеклеточном пространстве свободно перемещаются отдельные химические агенты (гистамин, простагландин), которые быстро разрушаются, но оказывают локальное действие: вызывают кратковременное сокращение гладкомышечных клеток, увеличивают проницаемость сосудистого эндотелия, вызывают ощущение зуда и т.п. Отдельные химические агенты способствуют факторам роста нервов. В частности, для роста и выживания симпатических нейронов.

По сути дела в организме существует две системы передачи информации: нервная и гормональная (подробно см. юниту 2).

Аксональный транспорт (аксоток) - это пере­мещение веществ от тела нейрона в отростки (антероградный аксоток) и в обратном направ­лении (ретроградный аксоток). Различают мед­ленный аксональный ток веществ (1-5 мм в су­тки) и быстрый (до 1-5 м в сутки). Обе транс­портные системы присутствуют как в аксонах, так и в дендритах. Аксональный транспорт обес­печивает единство нейрона. Он создаёт посто­янную связь между телом нейрона (трофиче­ским центром) и отростками. Основные синтети­ческие процессы идут в перикарионе. Здесь со­средоточены необходимые для этого органеллы. В отростках синтетические процессы протекают слабо.

Антероградная быстрая система транс­портирует к нервным окончаниям белки и орга­неллы, необходимые для синаптических функ­ций (митохондрии, фрагменты мембран, пузырь­ки, белки-ферменты, участвующие в обмене нейромедиаторов, а также предшественники нейромедиаторов). Ретроградная система воз­вращает в перикарион использованные и повре­жденные мембраны и белки для деградации в лизосомах и обновления, приносит информацию о состоянии периферии, факторы роста нервов. Медленный транспорт - это антероградная система, проводящая белки и другие вещества для обновления аксоппазмы зрелых нейронов и обеспечения роста отростков при их развитии и регенерации.

Ретроградный транспорт может иметь значение в патологии. За счёт него нейротропные вирусы (герпеса, бешенства, полиомиелита) могут перемещаться с периферии в централь­ную нервную систему.

Нейроглия

Глиоциты выполняют в нервной ткани вспомогательные функции: опорную, разграничительную, трофическую, секреторную и защитную. Они поддерживают постоянно среды вокруг нейронов. Клетки нейроглии делятся на 2 группы: макроглию и микроглию. Клетки макроглии бывают трех типов.

Эпендимоциты. Выстилают каналы и желудочки единого и головного мозга, по которым циркулирует спинномозговая жидкость (ликвор). Эти клетки напоминают однослойный призмати­ческий эпителий. На апикальных концах эпендимоцитов расположены реснички, помогающие движению спинномозговой жидкости. Через апи­кальные концы эпендимоциты могут выделять биологически активные вещества, которые с ли­дером разносятся по всему мозгу. От базальных концов эпендимоцитов отходят отрост­ки, которые могут идти через весь мозг. В желу­дочках мозга находятся сосудистые сплетения. Они покрыты специализированными эпендимоцитами, участвующими в образований ликвора.

Астроциты . Различают протоплазматические и волокнистые астроциты. Протоплазматические астроциты имеют короткие толстые отростки. Они расположены в сером веществе мозга, выполняют разграничительную и тро­фическую функции. Волокнистые астроциты находятся в белом веществе, имеют многочис­ленные тонкие длинные отростки, которые опле­тают кровеносные сосуды мозга, образуя периваскулярные глиальные пограничные мембраны. Их отростки также изолируют синапсы. Таким образом, они изолируют нейроны и кровеносные сосуды и участвуют в образовании гемато-энцефалического барьера, обеспечивают обмен веществ между кровью и нейронами. Они также участвуют в образовании оболочек мозга и вы­полняют опорную функцию (образуют каркас мозга).

Олигодендроциты имеют мало отростков, окружают нейроны, выполняя трофическую (участие в питании нейронов) и разграничительную Функции. Олигодендроциты, расположенные вокруг тел нейронов, называются мантийными глиоцитами. Олигодендроциты, расположенные в периферической нервной системе и образую­щие оболочки вокруг отростков нейронов, назы­вают леммоцитами (шванновскими клетками).

Микроглия (глиальные макрофаги). Образу­йся из костномозговых предшественников мо­ноцитов. Покоящиеся микроглиоциты имеют ко­роткие ветвящиеся отростки. Под действием микроорганизмов и продуктов распада нервной ткани они активируются, теряют отростки, округляются и превращаются в «зернистые шары» (реактивная микроглия). При этом они, как макрофаги, уничтожают разрушенные нервные и глиальные клетки.

Источники развития - нервная трубка, нервный гребень (ганглиозные пластинки) и плакоды. Нервная трубка образуется в результате смыкания краёв нервного желобка, разви­вающегося из эктодермы. Нервные гребни рас­положены между нервной трубкой и эктодермой Они образуются в результате выселения клеток из утолщенных краев нервного желобка - нерв­ных валиков. Плакоды представляют собой эктодермы по бокам нервной трубки на головном конце зародыша. Нейробласты нервной трубки дают начало нервным клеткам, а глиобласты - глиальным клеткам головного и спинного мозга. Из клеток нервного гребня про­исходят нейроны и нейроглия всех нервных ганглиев, а из плакод - рецепторные (нейросенсорные) клетки органа обоняния, нейроны слу­хового и вестибулярного ганглиев. Клетки микроглии образуются из промоноцитов красного костного мозга.

В ходе эмбриогенеза до 85% образующихся нейронов гибнет в результате апоптоза (генети­чески запрограммированной смерти). Погибают дефектные нейроны (с повреждённой ДНК), ней­роны, которые не нашли свои «клетки-мишени» или оказались избыточными, «лишними».

Поделиться