Какой закон природы выражает уравнение бернулли. Уравнение Бернулли

Документальные учебные фильмы. Серия «Физика».

Даниил Бернулли (Daniel Bernoulli; 29 января (8 февраля) 1700 - 17 марта 1782), швейцарский физик-универсал, механик и математик, один из создателей кинетической теории газов, гидродинамики и математической физики. Академик и иностранный почётный член (1733) Петербургской академии наук, член Академий: Болонской (1724), Берлинской (1747), Парижской (1748), Лондонского королевского общества (1750). Сын Иоганна Бернулли.

Закон (уравнение) Бернулли является (в простейших случаях) следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости:

Здесь

- плотность жидкости, - скорость потока, - высота, на которой находится рассматриваемый элемент жидкости, - давление в точке пространства, где расположен центр массы рассматриваемого элемента жидкости, - ускорение свободного падения.

Уравнение Бернулли также может быть выведено как следствие уравнения Эйлера, выражающего баланс импульса для движущейся жидкости.

В научной литературе закон Бернулли, как правило, называется уравнением Бернулли (не следует путать с дифференциальным уравнением Бернулли), теоремой Бернулли или интегралом Бернулли .

Константа в правой части часто называется полным давлением и зависит, в общем случае, от линии тока.

Размерность всех слагаемых - единица энергии, приходящаяся на единицу объёма жидкости. Первое и второе слагаемое в интеграле Бернулли имеют смысл кинетической и потенциальной энергии, приходящейся на единицу объёма жидкости. Следует обратить внимание на то, что третье слагаемое по своему происхождению является работой сил давления и не представляет собой запаса какого-либо специального вида энергии («энергии давления»).

Соотношение, близкое к приведенному выше, было получено в 1738 г. Даниилом Бернулли, с именем которого обычно связывают интеграл Бернулли . В современном виде интеграл был получен Иоганном Бернулли около 1740 года.

Для горизонтальной трубы высота постоянна и уравнение Бернулли принимает вид: .

Эта форма уравнения Бернулли может быть получена путём интегрирования уравнения Эйлера для стационарного одномерного потока жидкости, при постоянной плотности : .


Согласно закону Бернулли, полное давление в установившемся потоке жидкости остается постоянным вдоль этого потока.

Полное давление состоит из весового , статического и динамического давлений.

Из закона Бернулли следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает. Это является основной причиной эффекта Магнуса. Закон Бернулли справедлив и для ламинарных потоков газа. Явление понижения давления при увеличении скорости потока лежит в основе работы различного рода расходомеров (например труба Вентури), водо- и пароструйных насосов. А последовательное применение закона Бернулли привело к появлению технической гидромеханической дисциплины - гидравлики.

Закон Бернулли справедлив в чистом виде только для жидкостей, вязкость которых равна нулю. Для приближённого описания течений реальных жидкостей в технической гидромеханике (гидравлике) используют интеграл Бернулли с добавлением слагаемых, учитывающих потери на местных и распределенных сопротивлениях.

Известны обобщения интеграла Бернулли для некоторых классов течений вязкой жидкости (например, для плоскопараллельных течений), в магнитной гидродинамике, феррогидродинамике.

Дифференциальное уравнение вида , где , называется уравнением Бернулли.

Предполагая, что , разделим обе части уравнения Бернулли на . В результате получим: (8.1) Введем новую функцию . Тогда . Домножим уравнение (8.1) на и перейдем в нем к функции z(x) : , т.е. для функции z(x) получили линейное неоднородное уравнение 1-го порядка. Это уравнение решается методами, разобранными в предыдущем параграфе. Подставим в его общее решение вместо z(x) выражение , получим общий интеграл уравнения Бернулли, который легко разрешается относительно y . При добавляется решение y(x)=0 . Уравнение Бернулли можно также решать, не делая перехода к линейному уравнению путем подстановки , а применяя метод Бернулли.

Дифференциальные уравнения в полных дифференциалах.

Определение. Если в уравнении M(x,y)dx+N(x,y)dy=0 (9.1) левая часть есть полный дифференциал некоторой функции U(x,y) , то оно называется уравнением в полных дифференциалах. Это уравнение можно переписать в виде du(x,y)=0 , следовательно, его общий интеграл есть u(x,y)=c.

Например, уравнение xdy+ydx=0 есть уравнение в полных дифференциалах, так как его можно переписать в виде d(xy)=0. Общим интегралом будет xy=c.

Теорема. Предположим, что функции M и N определены и непрерывны в некоторой односвязной области D и имеют в ней непрерывные частные производные соответственно по y и по x . Тогда, для того, чтобы уравнение (9.1) было уравнением в полных дифференциалах, необходимо и достаточно, чтобы выполнялось тождество (9.2).

Доказательство. Доказательство необходимости этого условия очевидно. Поэтому докажем достаточность условия (9.2). Покажем, что может быть найдена такая функция u(x,y) , что и .

Действительно, поскольку , то (9.3) , где - произвольная дифференцируемая функция. Продифференцируем (9.3) по y: . Но , следовательно, .Положим и тогда .Итак, построена функция , для которой , а .

Интегрирующий множитель.

Если уравнение M(x,y)dx + N(x,y)dy = 0 не является уравнением в полных дифференциалах и существует функция µ = µ(x,y) , такая что после умножения на нее обеих частей уравнения получается уравнение

µ(Mdx + Ndy) = 0 в полных дифференциалах, т. е. µ(Mdx + Ndy)du , то функция µ(x,y) называется интегрирующим множителем уравнения. В случае, когда уравнение уже есть уравнение в полных дифференциалах, полагают µ = 1 .

Если найден интегрирующий множитель µ , то интегрирование данного уравнения сводится к умножению обеих его частей на µ и нахождению общего интеграла полученного уравнения в полных дифференциалах.

Если µ есть непрерывно дифференцируемая функция от x и y , то .

Отсюда следует, что интегрирующий множитель µ удовлетворяет следующему уравнению с частными производными 1-го порядка: (10.1). Если заранее известно, что µ= µ(ω) , где ω – заданная функция от x и y , то уравнение (10.1) сводится к обыкновенному (и притом линейному) уравнению с неизвестной функцией µ от независимой переменной ω : (10.2), где , т. е. дробь является функцией только от ω .

Решая уравнение (10.2), находим интегрирующий множитель , с = 1. В частности уравнение M(x,y)dx + N(x,y)dy = 0 имеет интегрирующий множитель, зависящий только от x (ω = x ) или только от y (ω = y ), если выполнены соответственно следующие условия: , или , .

10. Свойства решений ЛДУ II-го порядка (с док-вом). Линейное дифференциальное уравнение (ЛДУ) 2-го порядка имеет следующий вид: , (2.1)

где , , и – заданные функции, непрерывные на том промежутке, на котором ищется решение. Предполагая, что a 0 (x) ≠ 0, поделим (2.1) на и, после введения новых обозначений для коэффициентов, запишем уравнение в виде: (2.2)

Примем без доказательства, что (2.2) имеет на некотором промежутке единственное решение, удовлетворяющее любым начальным условиям , , если на рассматриваемом промежутке функции , и непрерывны. Если , то уравнение (2.2) называется однородным, и уравнение (2.2) называется неоднородным в противном случае. Рассмотрим свойства решений лоду 2-го порядка.

Определение. Линейной комбинацией функций называется выражение , где – произвольные числа.

Теорема. Если и – решение лоду , (2.3) то их линейная комбинация также будет решением этого уравнения.

Как закон Всемирного Тяготения Ньютона действовал задолго до самого Ньютона, так и уравнение Бернулли существовало задолго до того, как родился сам Бернулли. Ему удалось лишь облечь это уравнение в наглядную форму, в чем его неоспоримая и огромная заслуга. Зачем мне уравнение Бернулли, спросите Вы, ведь я прекрасно жил и без него. Да, но оно может пригодиться Вам хотя бы на экзамене по гидравлике! Как говорится, «все не так уж плохо, если ты знаешь и можешь сформулировать уравнение Бернулли».

Кто такой Бернулли?

Даниил Бернулли – сын известного ученого Якоба Бернулли, швейцарский математик и физик. Жил с 1700 по 1782 годы, а с 1725 по 1733 трудился в Петербургской Академии наук. Помимо физики и математики Бернулли также изучал медицину наряду с Д’Аламбером и Эйлером считается отцом основателем математической физики. Успехи этого человека позволяют с уверенностью сказать, что это был настоящий «супермозг».

Д. Бернулли (1700-1782)

Идеальная жидкость и течение идеальной жидкости

Помимо известной нам материальной точки и идеального газа существует также идеальная жидкость . Какой-нибудь студент, конечно, может подумать, что эта жидкость – его любимое пиво или кофе, без которого невозможно жить. Но нет, идеальная жидкость – это жидкость, которая абсолютно несжимаема, лишена вязкости и теплопроводности. Тем не менее, такая идеализация дает вполне хорошее описание движения реальных жидкостей в гидродинамике.

Течением жидкости называется движение ее слоев относительно друг друга или относительно всей жидкости.

Помимо того есть разные режимы течения жидкости. Нас интересует тот случай, когда скорость потока в какой-то конкретной точке не меняется со временем. Такой поток называют стационарным. При этом скорость течения в различных точках стационарного потока может различаться.

– совокупность частиц движущейся жидкости.


Вывод уравнения Бернулли

Но как описать движение жидкости? Для этого нам нужно знать вектор скорости частиц, точнее зависимость его от времени. Совокупность скоростей в разных точках потока дает поле вектора скорости.

Рассмотрим стационарное течение жидкости по трубке. В одном месте сечение этой трубки равно S1, а в другой – S2. При стационарном потоке через оба сечения за одинаковый промежуток времени пройдет одинаковое количество жидкости.

Данное уравнение – уравнение неразрывности струи.


Узнав его, Бернулли решил установить связь между давлением и скоростью жидкости в разных сечениях. Полное давление – это сумма статистического (обусловлено потенциальной энергией жидкости) и динамического давлений (обусловлено кинетической энергией). Оказывается, сумма статического и динамического давлений в любом сечении трубы постоянна. Само же уравнение Бернулли имеет вид:

Смысл уравнения Бернулли

Физический смысл уравнения Бернулли. Уравнение Бернулли является следствием закона сохранения энергии. Первый член уравнения Бернулли – это кинетическая энергия, второе слагаемое уравнения Бернулли – потенциальная энергия в поле силы тяжести, третье – работа силы давления при подъеме жидкости на высоту h.

Вот и все, друзья, не так уж и страшно. Совсем немного времени, а Вы уже знаете уравнение Бернулли. Даже если Вы не знаете больше ничего, с этими знаниями идти на экзамен или зачет гораздо лучше, чем просто так. А если Вам необходима помощь в том, как решать задачи на уравнение Бернулли – не стесняйтесь и оформляйте заявку. После того как распишут решение уравнения Бернулли максимально подробно, у Вас не останется пробелов в знаниях.

При движении реальной жидкости, вследствие её вязкости, действуют гидравлические сопротивления, на преодоление которых затрачивается энергия. Эта энергия превращается в теплоту и рассеивается в дальнейшем движущей жидкостью.

Уравнение Бернулли для струйки реальной жидкости имеет вид

где ─ потери напора на участке длинойвдоль оси струйки между двумя сечениями.

Уравнение Бернулли для потока реальной жидкости имеет вид:

(3.9)

где
─ коэффициенты Кориолиса, учитывающие различие скоростей в разных точках сечения потока реальной жидкости.

На практике
: для ламинарного режима течения жидкости в круглых трубах
; для турбулентного режима
.

С помощью уравнения Бернулли решается большинство задач практической гидравлики. Для этого выбирают два сечения по длине потока, таким образом, чтобы для одного из них были известны величины
, а для другого сечения одна или величины подлежали определению. При двух неизвестных для второго сечения используют уравнение постоянства расхода жидкостиυ 1 ω 1 = υ 2 ω 2 .

Гидравлические сопротивления

Движущийся поток жидкости на своем пути преодолевает силы трения жидкости о стенки трубы или канала и различные местные сопротивления, вследствие чего возникают потери удельной энергии. Потери напора различают двух видов:

Потери по длине потока ;

Потери на преодоление местных сопротивлений
.

Полные потери напора равны сумме всех потерь

(3.10)

Потери напора по длине

При равномерном движении в трубах потери напора по длине, как при турбулентном, так и при ламинарном движении определяются для круглых труб по формуле Дарси

(3.11)

а для труб любой другой формы сечения по формуле

(3.12)

В некоторых случаях также используют формулу

(3.13)

Потери давления на трение по длине
, Па, определяются по формуле

(3.14)

где ─ длина участка трубы или канала, м;

─эквивалентный диаметр, м;

─средняя скорость течения, м/с;

─гидравлический радиус трубы, м;

─коэффициент гидравлического трения;

─коэффициент Шези, связанный с коэффициентом гидравлического трения зависимостями

;

В зависимости от режима движения применяются различные формулы для определения коэффициента гидравлического трения.

При ламинарном движении по трубам круглого сечения коэффициент гидравлического трения определяется по формуле

(3.15)

а для труб любой формы сечения

(3.16)

где А ─ коэффициент, численное значение которого зависит от формы поперечного сечения трубы.

Тогда формула для определения потерь напора по длине при ламинарном режиме принимает вид

(3.17)

Впервые наиболее исчерпывающие работы по определению были даны И.И. Никурадзе, который на основе опытных данных построил график зависимости
от
для ряда значений
. Опыты Никурадзе были проведены на трубах с искусственно заданной шероховатостью, полученной путем приклейки песчинок определенного размера на внутренние стенки трубопровода. Результаты этих исследований представлены на рисунке 3.5, где построены зависимости
от
для ряда значений
.

Прямая I соответствует ламинарному режиму движения жидкости в соответствии с выражением (3.15).

При турбулентном режиме различают три области гидравлических сопротивлений, установленных в результате опытов, проведенных Никурадзе (см. рисунок 3.5)

Рисунок 3.5 ─ График Никурадзе

Первая область ─ область малых
и
, где коэффициентне зависит от шероховатости, а определяется лишь числом
(отмечена на рисунке 3.5 прямой II).

Это область гидравлически гладких труб . Если число Рейнольдса лежит в диапазоне коэффициентопределяется по полуэмпирической формуле Блазиуса

. (3.18)

Рассмотрим ламинарное движение идеальной (то есть без внутреннего трения) несжимаемой жидкости в изогнутой трубке разного диаметра. Мы уже знаем, что из уравнения непрерывности жидкости S⋅v = const. Какие ещё можно сделать выводы?

Рассмотрим трубку разного сечения:

Возьмём срез жидкости в трубке. Из уравнения непрерывности следует, что при уменьшении сечения трубы увеличивается скорость потока жидкости. Если скорость увеличивается, значит по второму закону Ньютона действует сила F = m⋅a. Эта сила возникает за счет разности давления между стенками сечения потока жидкости. Значит сзади давление больше, чем спереди сечения. Это явление впервые описал Даниил Бернулли.

Закон Бернулли

В тех участках течения жидкости, где скорость больше давление меньше и наоборот.

Как любое тело, жидкость при перемещении совершает работу, т.е. выделяет энергию или поглощает. Закон сохранения энергии утверждает, что энергия тела никогда не исчезает и не появляется вновь, она может лишь превращаться из одного вида в другой. Этот закон универсален. В различных разделах физики он имеет свою формулировку.

Рассмотрим, какую работу совершает жидкость:

  • Работа давления жидкости (E P) . Давления жидкости выражается в том, что жидкость сзади давит на жидкость спереди.
  • Работа по перемещению жидкости на высоту h (E h) . При опускании жидкости эта работа отрицательная, при поднятии - положительная.
  • Работа по приданию скорости жидкости (E v) . При сужении трубки работа положительная, при расширении - отрицательная. Ещё это называют - кинетическая энергия или динамическое давление.

Так как мы рассматриваем идеальную жидкость, то трение отсутствует, а значит нет работы силы трения. Но в реальной жидкости она присутствует.

По закону сохранения энергии:

E p + E h + E v = const

Давайте теперь определим, чем равняется каждая из этих работ.

Работа давления жидкости (E P)

Формула давления имеет вид: P = F/S, F = P⋅S. Работа силы создающая давление:

E P = P⋅S⋅ΔL = P⋅V

Работа по перемещению жидкости на высоту h (E h)

Работа по перемещению жидкости на высоту h - это изменение потенциальной энергии которая равна:

E h = m⋅g⋅h = V⋅ρ⋅g⋅h

Работа по приданию скорости жидкости (E v)

Работа по приданию скорости жидкости - это кинетическая энергия, которая зависит от массы тела и его скорости и равна:

E k = m⋅v 2 /2 = V⋅ρ⋅v 2 /2

Получим формулу сохранения энергии жидкости:

P⋅V + V⋅ρ⋅g⋅h + V⋅ρ⋅v 2 /2 = const

Сократим каждое слагаемое на V. Получим уравнение:

Формула Бернулли

P + ρ⋅g⋅h + ρ⋅v 2 /2 = const

Разделим каждый член последнего уравнения ρ⋅g, получим

h + P  +  v 2  = const
ρ⋅g 2g

где h - геометрический напор, м;
P / ρ∙g - пьезометрический напор, м;
v 2 / 2g - скоростной напор, м.

Полученное уравнение называется уравнением Бернулли для элементарной струйки идеальной жидкости. Оно было получено Даниилом Бернулли в 1738 году.

Сумма трех членов уравнения называется полным напором.

Или можно сказать по-другому - для идеальной движущейся жидкости сумма трех напоров: геометрического, пьезометрического и скоростного есть величина постоянная вдоль струйки.

Поделиться