Дендрит. Дендриты в металлах Как строение нейроцита связано с его функциями

Изображений дендритной структуры металлов в Интернете очень мало, не считая известной фотографии кристалла Чернова, да еще схемы из учебника А.П. Гуляева. Но уже если заниматься структурами металлов, то надо знать, как они выглядят. В таком деле, как металловедение, никакое описание не заменит реальных изображений структур, их рассмотрения, осмысления, анализа.
Итак, дендриты в металлах . Прежде всего надо сказать, что дендритные структуры формируются, как правило, при кристаллизации из расплава.

Кристаллизация из жидкости начинается появлением центров кристаллизации, т.е. точек, из которых продолжается дальнейшее построение кристаллов. В результате этого из жидкости начинают формироваться кристаллические образования разного вида. В исключительных случаях формируется кристалл, имеющий геометрически правильную форму - многогранника или полиэдра. Это происходит в тех случаях, когда внешние условия способствуют полному развитию кристалла (во всех направлениях).
В обычных условиях формируются кристаллы неправильных очертаний, которые называют кристаллитами. Различают кристаллиты двух видов . В одном случае форма кристаллита приближается к многогранной, или же принимает округлые очертания. Такое образование называется зерном. В другом случае кристаллические образования имеют ветвистую форму с незаполненными промежутками, напоминающую деревце. Их и называют дендритами.
Дендриты являются начальной стадией формирования кристалла. Кристалл начинает формироваться от центра кристаллизации. При этом не получается плотная укладка кристаллических групп в один кристалл; сначала эти группы связываются друг с другом по определенным направлениям, образуя оси будущего кристалла.
Если условия кристаллизации таковы, что пространства между осями не успевают или не могут заполниться, форма дендрита сохраняется и ее можно наблюдать.
Дендри́ты (от греч. δένδρον — дерево) — сложнокристаллические образования древовидной ветвящейся структуры (wikipedia - статья «Дендрит(кристалл)»). Это определение очень удачное - дендриты действительно имеют ветвящуюся структуру, похожую на деревце. И это можно доказать. На рисунке 1 показан самый настоящий дендрит . Он сформировался в процессе самораспространяющегося высокотемпературного синтеза в системе Ni-Ti-O.

Рисунок 1. Истинный дендрит.

Дендрит является монокристаллом (т.е. одним кристаллом). представлена на рисунке 2. Сначала формируются оси первого порядка, потом на них зарождаются и растут оси второго порядка. Далее - третьего.

Рисунок 2. Схема формирования дендрита.

Как видно из представленных ниже рисунков, дендриты в металле по форме действительно представляют собой «веточки». Иногда говорят "ветви дендритов" .

Рисунок 3. Дендриты в алюминиевые сплавах : дендриты алюминиевого твердого раствора и эвтектика Al-Si.

Аустенитный чугун ЧН15Д7 Доэвтектический чугун

Рисунок 4.

В реальном кристалле обычно видны оси первого и второго порядков, третьего - реже (в сущности, на их формирование просто не хватает времени - кристаллизация заканчивается). В общем, чем больше порядков видно, тем медленнее кристаллизовался сплав. Ниже на рисунке 5 показан дендрит, содержащий оси трех порядков. Третий порядок сформирован не полностью, в некоторых местах оси третьего порядка только намечаются. Ось первого порядка -зеленая стрелка, второго - синяя, третьего - красная.

Рисунок 5. Дендриты разных порядков в силумине.

Дендритные структуры различных сплавов подобны. По виду литой структуры не всегда можно понять, какой это сплав, в особенности при небольшом увеличении. Например, дендриты в стали, чугуне, меди и оксидной системе.

Рисунок 6. Дендритная структура в различных сплавах при увеличении от 100 х до 200 х.

Иногда дендрит имеет форму (принято говорить «морфологию»), свойственную совершенно определенным сплавам. Например, в заэвтектическом силумине (сплав алюминий-кремний. содержание кремния более 11,7%) при литье в землю формируются кристаллы кремния, имеющие дендритное строение. Это так называемые скелетные кристаллы кремния . Иногда говорят «скелетики» кремния . При более высокой скорости кристаллизации (литье в металлическую форму - кокиль) кристаллы кремния уже имеют полигональную форму. Встречаются, правда, и исключения...

Рисунок 7. Кристаллы кремния в заэвтектическом силумине.

При большем увеличении сплав легче определить: легированный силумин (дендрит кремнистой фазы), ферритный чугун (дендриты феррита), баббит (дендрит сурьмы ). Четвертый рисунок идентифицировать не просто - это структура, полученная самораспространяющимся высокотемпературным синтезом (возможно, дендрит интерметаллида на фоне эвтектики).

Рисунок 8. Характерные дендриты в различных сплавах.

Можно было бы спросить: зачем так много о дендритах?

Дело в том, что каждому материалу придают определенную структуру, исходя из практических целей. Например, чугуны "работают" в литом состоянии (их можно и деформировать, но это не является темой настоящей статьи). Сталь, как правило, поставляется в деформированном состоянии. Лист, пруток, полоса, лента - все это формы поставки стальных полуфабрикатов. Для получения таких полуфабрикатов исходно литая сталь проходит специальную обработку давлением при повышенных температурах. Литой структуры после такой обработки быть не должно. Поэтому, если она сохранилась, то это брак. Это показано на рис.9. Окружностью отмечен литой "скелетик" в стали. Мы еще вернемся к этой теме в разделе "Антипродукция ".

Рисунок 9. Остатки литой структуры в стали Р18 (изделие - метчик ).

Дендриты должны быть узнаваемы не только непосредственно в сплавах, но и во вспомогательных материалах, например в сплаве Вуда. Вид структуры сплава Вуда бывает разным. Это зависит от состава, а также "свежий" это сплав, или же многократно использованный. На рисунке 10 показаны дендриты в сплаве Вуда , многократно переплавленном. Естественно, что в таком сплаве достаточно много "грязи", попавшей в сплав при переплавах.

а б
в г

Рисунок 10. Дендриты в сплаве Вуда: а - светлопольное изображение ; б-г - дифференциально-интерференционный контраст .

Ледяные узоры узнаваемы всегда. Лед - это твердая форма существования воды, которая образуется в процессе кристаллизации (замерзания). Формы ее разнообразны. Кстати, дендриты льда можно видеть в каждой замерзающей луже (следует помнить, что вода в интервале температур от 0 до 100 0 С представляет собой расплав льда).

Рисунок 11. Дендриты льда различной морфологии (фото со стекла).

Снежинки - это тоже дендриты , только в форме звездочек.

А вот ниже показаны дендриты, которые мы, к сожалению, не столько видим, сколько чувствуем. Это кристаллы льда на поверхности тротуарной плитки. всерху - вода. После мороза наступила оттепель, пошел дождь. Плитка нагреться не успела по причине своей недостаточной теплопроводности. Вот часть дождевой воды и закристаллизовалась.

Рисунок 11. Дендриты льда на поверхности плитки, на которой все падают.

Следующие фотографии - это "дендриты на металлах ". На рисунке 13 представлены результаты промывки шлифа бериллиевой бронзы этиловым спиртом (вместо воды) после травления насыщенным раствором бихромата калия в серной кислоте. Промывка спиртом не удалась, реактив остался на поверхности и высох. При различных увеличениях на поверхности можно видеть кристаллы бихромата калия. Они имеют свой характерный цвет.

а б

Рисунок 13. Дендриты бихромата калия на образце бериллиевой бронзы БрБ2.

Образования древовидной ветвящейся структуры.

Термин этот давнего происхождения, Вернер упоминал «дендритные формы» минералов ещё в г. На внесении необходимой однозначности в употреблении минералогических термина «дендрит» и уточнении его содержания настаивал Д. П. Григорьев . Дендрит представляет собой ветвящееся и расходящееся в стороны образование, возникающее при ускоренной или стеснённой кристаллизации в неравновесных условиях, когда кристалл расщепляется по определённым законам. В результате он утрачивает свою первоначальную целостность, появляются кристаллографически разупорядоченные блоки. Они ветвятся и разрастаются в разные стороны подобно дереву, тянущемуся к солнечному свету, кристаллографическая закономерность изначального кристалла в процессе его дендритного развития утрачивается по мере его роста. Дендриты могут быть трёхмерными объёмными (в открытых пустотах) или плоскими двумерными (если растут в тонких трещинах горных пород).

Процесс образования дендрита принято называть дендритным ростом.

В качестве примера дендритов можно привести снежинки, ледяные узоры на оконном стекле, живописные окислы марганца , имеющие вид деревьев в пейзажных халцедонах («моховой агат ») и в тонких трещинах розового родонита . А также веточки самородной меди в зонах окисления рудных месторождений, дендриты самородных серебра и золота , решётчатые дендриты самородного висмута и ряда сульфидов . Почковидные или кораллообразные дендриты известны для малахита , барита и многих других минералов, к ним относятся и так называемые «пещерные цветы» кальцита и арагонита в карстовых пещерах .

Примечания

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Дендрит (кристалл)" в других словарях:

    У этого термина существуют и другие значения, см. Дендрит (кристалл). В Викисловаре есть статья «дендрит» Дендрит … Википедия

    Dendrite Дендрит. Кристалл, который имеет древовидную ветвящуюся модель, наиболее хорошо видимую в медленно охлажденных литых металлах. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО Профессионал, НПО Мир и семья;… … Словарь металлургических терминов

    - (греч. dendrites, от dendron дерево). Камень, преимущественно известняк, с природными древовидными изображениями на нем. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ДЕНДРИТ греч. dendrites, от dendron, дерево.… … Словарь иностранных слов русского языка

    Агрегат, кристалл, отросток Словарь русских синонимов. дендрит сущ., кол во синонимов: 4 агрегат (34) … Словарь синонимов

    - [δένδρον (δендрон) дерево] древовидные агр., б. ч. фигуры роста, состоящие из отдельных сросшихся друг с другом в параллельном или двойниковом положении кристаллических индивидов (иногда из скопления… … Геологическая энциклопедия

    Друза, кристаллит, кристаллик, вискер, микролит, периморфоза, рафид, хрусталь Словарь русских синонимов. кристалл см. хрусталь Словарь синонимов русского языка. Практический справочник. М.: Русский язык. З. Е. Александрова … Словарь синонимов

    КРИСТАЛЛ ЧЕРНОВА - дендрит длиной около 400 мм, образовавшийся в усадочной раковине крупной отливки, когда жидкая сталь опустилась для питания тела отливки. Кристалл чернова имеет незаполненные промежутки между ветвями; его развитие идет прерывисто из мелких… … Металлургический словарь

    ДЕНДРИТ - кристалл древовидной формы, состоящий из ствола (ось нулевого порядка), от которого идут ветви (оси второго и последующих порядков). Дендритный рост кристаллов реализуется в большинстве случаев, например, при литье слитков и отливок.… … Металлургический словарь

    - (от греч. dendron дерево) кристалл древовидной, ветвистой формы (см. рис.). Д. характерны для литых сталей и др. металлов и сплавов (напр., для самородных меди, серебра, золота, ряда минералов пиролюзита, уранинита и др.), льда. Дендрит золота … Большой энциклопедический политехнический словарь

    кристалл - ▲ твердое (состояние) с, порядок, располагаться, молекула кристалл твердое состояние с упорядоченным расположением молекул. кристаллический. кристальный. < > аморфный монокристалл кристалл с непрерывной кристаллической решеткой. друза.… … Идеографический словарь русского языка

Нервная ткань, состоящая из нейронов и нейроглии, выполняет комплекс наиболее сложных и ответственных функций: в ней возникают слабые электрические импульсы, которые затем передаются в мышцы и органы человека или позвоночных животных. Клетки этой ткани имеют специальное строение. Оно обеспечивает как возникновение процессов возбуждения и торможения, так и их проведение. В нейробиологии есть такое определение: дендриты - это отростки нервной клетки, которые воспринимают и передают информацию к телу нейрона. В данной работе мы ознакомимся с современными представлениями о механизмах передачи в основных отделах нервной системы: головном и спинном мозге, а также изучим строение дендрита как одной из составных частей нейроцитов.

Для этого рассмотрим более детально особенности структуры нейрона, являющегося элементарной единицей нервной ткани.

Как строение нейроцита связано с его функциями

Подтвердили факт высокой специализации и сложного устройства открытой биологической системы, названной нервной клеткой. Она содержит тело (сому), одну длинную ветвь - аксон и множество коротких отростков. Каждый из них соединен с цитоплазмой тела нейрона. Это дендрит. Структура и внешний вид совокупности коротких отростков напоминает крону дерева. По ним к телу нейрона через синапсы поступают биоэлектрические потенциалы от других нервных клеток.

Морфология и типы

Согласно современным исследованиям гистологии, дендриты - это ветвящиеся окончания нейроцита, не только принимающие, но и передающие информацию, закодированную в виде электрических импульсов, по многоканальной системе анатомически и функционально взаимосвязанных нервных клеток. Они содержат большое количество белоксинтезирующих органелл - рибосом. Некоторые виды коротких отростков, например в пирамидальных нейроцитах, покрыты специальными структурами - шипиками.

Согласно классификации, предложенной испанским нейрогистологом С. Рамон-и-Кахалем, два дендрита могут отходить от тела нервной клетки в противоположные стороны (двухполярные нейроциты). Если же дендритов много, то они расходятся от сомы радиально. Такое строение характерно для интернейронов. В мозжечковых клетках Пуркинье отростки выходят из тела нейроцита в виде веера. Каждый дендрит, структура которого трехмерна, отличается от соседних ветвей величиной электрических зарядов, аккумулированных на нем.

На что влияет разветвленность нервных отростков

Тело нейрона является универсальным передающим и одновременно принимающим биологическим объектом. Объем (прежде всего поступающей информации) прямо пропорционален количеству входящих нервных импульсов. Они определяются по степени ветвления дендритного дерева. Поэтому дендриты - это структуры нейроцита, играющие интегративную функцию.

Более того, отростки расширяют площадь контакта нервных клеток между собой. Дополнительное же образование синапсов в разы повышает эффективность работы всех отделов, как головного и спинного мозга, так и нервной системы в целом.

Строение дендрита

На основании изучения микроскопических препаратов нервных клеток установили, что большинство отростков имеют цилиндрическую форму. Их диаметр в среднем составляет 0,9 мкм. Длина дендритов варьирует в широких пределах. Например, звездчатые нейроны серого вещества коры головного мозга имеют короткие (не более 200 мкм) ветви дендритного дерева, тогда как отростки двигательного нейрона, входящего в передние рога спинного мозга, составляют порядка 2 мм.

Специальные образования - шипики, формирующиеся на ветвях нейроцитов, приводят к появлению большого числа синапсов - щелевидных мест контакта с аксоном, дендритом или сомой другого нейрона. Синапсы могут располагаться на теле дендрита и называются стволовыми или же непосредственно на его шипиках. Как мы уже знаем, дендриты - это разветвленные отростки нейроцитов, способные принимать возбуждение. Передача же биопотенциалов происходит в них с помощью молекул химических соединений - медиаторов, например, ГАМК или ацетилхолина. В мембране, покрывающей дендрит, обнаружены ионные каналы, избирательно пропускающие катионы кальция, натрия и калия, участвующие в прохождении нервных импульсов через нейрон.

Как информация поступает в нервную клетку

В процессе передачи электрических зарядов, лежащей в основе возбуждения и торможения, наряду с аксоном участвуют и дендриты. Это которые образуют синапсы с ветвями дендритного дерева других нейроцитов. Опытным путем установлено, что дендриты представляют собой выросты цитоплазмы клетки, покрытые мембраной. В ней возникают слабые электрические импульсы - потенциалы действия.

Благодаря системе коротких отростков одна нервная клетка воспринимает и передает несколько тысяч таких импульсов, генерируемых синапсами. Это не единственная функция дендритов. Они также обрабатывают и объединяют информацию, поступающую в нейроны, что обеспечивает регуляцию и контроль, осуществляемый нервной системой над всеми органами и тканями человеческого организма.

В чистых металлах и эвтектических сплавах, а также в сплавах, имеющих состав, соответствующий химическому соединению, при медленном охлаждении кристаллизация происходит при определенной постоянной температуре. Остальные сплавы, как было показано выше, кристаллизуются в некотором интервале температур, определяемом диаграммой состояния (рис. 2.2).

Рисунок 2.3 - Формы роста кристаллов: а - ступенчатая, б - ячеистая, в - дендритная форма роста кристаллов

Основной единицей структуры первичной кристаллизации металла является зерно, характеризуемое единой системой ориентации атомов кристаллической решетки и определенными границами, отделяющими его от соседних зерен.

Форма растущих в расплаве кристаллов зависит от переохлаждения жидкости, направления теплоотвода, содержания примесей в стали и других параметров.

При малых скоростях охлаждения поверхность границы затвердевания получается гладкой с небольшими ступенями при средних развивается ячеистая структура и при больших - дендритная (рис. 2.3). На условия перехода от одной структуры к другой влияют температурный градиент в расплаве и твердой фазе. Чем больше скорость кристаллизации и меньше температурный градиент в расплаве, тем больше вероятность образования дендритной структуры.

В стальных слитках образуется дендритная и ячеистая структура.

Дендритное строение кристаллов в слитке было обнаружено еще Д.К. Черновым в 1868 г. В сравнении с плоским фронтом затвердевания дендритная кристаллизация представляет собой чрезвычайно сложный процесс, связанный с геометрической формой дендритов, диффузией примесей, возможностью движения жидкой фазы в междендритном пространстве, образованием новых неметаллических фаз (неметаллических включений) и ряда других явлений. Дендритная структура влияет на размер зерна и механические свойства литой и деформированной стали. На рис.2.4 приведены фотографии дендритов в крупном стальном слитке, выявленные после глубокого травления металла. Видно, что в строении дендрита выделяется главная ось первого порядка и перекрещивающиеся с ней оси второго, а иногда и третьего порядка.

Рисунок 2.4

Рост дендрита, образующегося на холодной поверхности и выступающего в расплав характеризуется различной скоростью роста отдельных плоскостей кристаллов. Быстро растущие поверхности образуют шип, выступающий в оставшийся расплав. Выделяющаяся в переохлажденный расплав теплота кристаллизации растущего кристалла ухудшает условия роста других близлежащих кристаллов.

Первоначально дендриты очень малы, даже если затвердевание идет сравнительно медленно. Затем, когда процесс затвердевания замедляется, рост продолжают лишь отдельные ветви, оси которых совпадают с направлением теплового потока (рис.2.5). Другие ветви при этом частично растворяются таким образом, что протяженность дендритов значительно увеличивается по мере затвердевания. Окончательная длина дендритов определяется процессом их укрупнения и может составлять величину от нескольких миллиметров до десятков сантиметров.

Рисунок 2.5

Современные теории опираются на дислокационный рост кристаллов. На поверхности кристалла в месте пересечения винтовой дислокации возникает ступенька, на которой, в сравнении с заполненной плоскостью, имеются более благоприятные условия для образования двухмерного зародыша, что подтверждается наличием на поверхности кристалла спирали роста. Закругление дислокационной линии вызывается постоянной скоростью роста в месте дислокационной линии и снижением скорости роста по мере удаления от нее.

По мере увеличения скорости охлаждения формы различных кристаллов постоянно усложняются. Для малых скоростей охлаждения характерны глобулярные или округлые формы. С увеличением скорости охлаждения формы кристаллов становятся неправильными, а процесс их роста неустойчивым. При дальнейшем ускорении охлаждения возникают и становятся все более четкими дендритные формы, а оси дендритов становятся все более тонкими и расстояния между ними уменьшаются. Наконец, при самых больших скоростях охлаждения оси второго и третьего порядка перестают образовываться и возникают игольчатые формы. Наблюдения за скоростью роста дендритов показывают, что оси их растут с преобладающей продольной скоростью. Причем скорость роста осей первого порядка больше, чем второго, а второго - больше чем третьего.

Общая схема областей и зон в затвердевающем слитке приведена на рис.2.6. Эта схема предполагает последовательную кристаллизацию металла в условиях направленного теплоотвода.

Рисунок 2.6

В первый момент при заливке стали, когда жидкий металл непосредственно контактирует с холодной стенкой изложницы, тонкий слой металла, соприкасающийся со стенкой изложницы, быстро переохлаждается до температуры ниже точки ликвидуса. Это приводит к возникновению и быстрому росту большого числа зародышей кристаллов, которые образуются на различных твердых частицах, в достаточном количестве имеющихся в жидкой стали и служащих атализаторами зарождения. Ширина корковой зоны определяется протяженностью области термического переохлаждения и может составлять величину порядка 5-10 мм.

Возникшее вначале термическое переохлаждение снижается с ростом кристаллов корковой зоны. Когда переохлаждение становится меньше того, при котором действие катализаторов уже не проявляется, возможен рост только существующих кристаллов. В этом случае наиболее благоприятные условия роста создаются лишь для отдельных кристаллов, у которых главные направления роста совпадают с направлением теплоотвода, что приводит к возникновению столбчатой зоны, формирующейся в условиях последовательной кристаллизации.

При этом фронт затвердевания представляет собой двухфазную твердо-жидкую область (выступающие дендриты с заключенной между их осями жидкостью), а ширина двухфазной зоны определяется интервалом температур кристаллизации (распределение в ней твердой фазы зависит от темпа кристаллизации сплава). Если гетерогенное зародышеобразование происходит слабо, а обламывание дендритов минимальное, что имеет место при слабой конвекции и высоком температурном градиенте, то получается направленный рост столбчатых дендритов.

Рост кристаллов столбчатой зоны сопровождается также снятием термического переохлаждения выделяющейся теплотой кристаллизации и повышением концентрации легкоплавких растворимых примесей перед фронтом кристаллизации, что приводит к возникновению концентрационного переохлаждения. Последнее обеспечивает дальнейший рост столбчатых кристаллов, вытянутая форма которых свидетельствует об отсутствии на этом этапе условий для образования новых центров зародышеобразования. По мере развития процесса температурный градиент у фронта кристаллизации уменьшается, а степень концентрационного переохлаждения увеличивается. В результате создаются благоприятные условия для гетерогенного зарождения новых зародышей в объеме расплава с последующим ростом “жизнеспособных” кристаллов (имеющих размер, несколько больший критического) за счет отдачи скрытой теплоты кристаллизации переохлажденному расплаву. С этого момента перед фронтом кристаллизации начинается объемная кристаллизация, образующая вторую двухфазную жидко-твердую область (кристаллы, взвешенные в расплаве).

Кроме того, на этом этапе может наблюдаться механическое обламывание ветвей дендритов, обусловленное движением конвективных потоков жидкой стали и подплавлением некоторых ветвей дендритного каркаса. При этом отделившиеся частицы дендритов образуют жидко-твердую область и служат самостоятельными зародышами кристаллизации.

Таким образом, затвердевание слитка является сложным комплексом физико-химических и теплофизических процессов, изучение которых – необходимая предпосылка для разработки оптимальных технологических режимов производства слитков, обеспечивающих высокий выход годного металла и качество, удовлетворяющее требованиям современным стандартов.

УДК 669. 13.62

Л.В. Палаткина

ОСОБЕННОСТИ СТРУКТУРООБРАЗОВАНИЯ В СЕРОМ ЧУГУНЕ

Волгоградский государственный технический университет

Выполнен анализ первичной структуры чугуна и рассмотрен возможный вариант её трансформации, влияющий на рост прочности в чугунных отливках.

Ключевые слова: серый чугун, композиционное упрочнение, дендрит, эвтектика, активность углерода (ас), прочность.

Введение

Большое количество исследований за длительный период производства различной продукции показывает, что серый чугун с пластинчатым графитом, оставаясь одним из самых дешевых и доступных материалов, обеспечивает надёжность и долговечность различных машин и механизмов. Однако чугун во многом не использует своих потенциальных возможностей и резервов, которые так необходимы для улучшения качественных характеристик изделий из него и расширения сферы его использования.

Недостаточные успехи производства в изготовлении высококачественных деталей машин и механизмов во многом являются следствием несовершенства подхода к процессам структурообразования серого чугуна. В тоже время применение принципиально нового композиционного подхода к строению одного из старейших литейных сплавов, является наиболее перспективным из существующих направлений. Композиционный подход основан на том, что в первом приближении первичная структура серого чугуна подобна структуре волокнистых композиционных материалов (ВКМ), армированных дискетными волокнами. Морфологические особенности структуры кристаллизации серого чугуна таковы, что при её формировании в течение первого этапа кристаллизации, образуя пространственный каркас, выделяются весьма совершенные образования: разветвлённые, цельнометаллические дендритные монокристаллы первичного аустенита, сохраняющие свою индивидуальную форму при последующих твердофазных превращениях. После достижения межденритной жидкостью эвтектического состава в виде ячеек кристаллизуется эвтектика, образуя тем самым непрерывную матрицу. Каждая ячейка имеет внешнюю металлическую границу, состоящую из легкоплавких ликватов, а внутренние объёмы находящегося в ней эвтектического аустенита разупрочнены, в зависимости от степени разветвлённости графитного монокристалла.

Предпосылки композиционного подхода были заложены в работах зарубежных и отечественных ученых Н. Г. Гиршовича, Г. А. Косникова, И. А. Иоффе, В. Паттерсона и Г. Н. Троицкого ; развиты в исследованиях В. А. Ильинского, Л. В. Костылевой, А. А. Жукова и нашли признание в трудах Б. Н. Арзамасова и Р. Эллиота . В связи с этим, изучение структуры серого чугуна и поиск на этой основе новых технических решений по повышению качества чугунных отливок является актуальной задачей, которая имеет как научное, так и прикладное значение.

Цель данной работы заключалась в изучении особенностей образования первичной структуры чугуна и анализе возможности её изменения для повышения прочности чугунных отливок.

Методика проведения исследований

Предметом исследования были серые машиностроительные чугуны с пластинчатым графитом марок СЧ 15 - СЧ 30, согласно ГОСТ 1412-85 (СТ СЭВ 4560-84). Степень эвтек-тичности исследуемых композиций чугунов изменялась в пределах от 0,82 до 1,0. Металло-

© Палаткина Л.В., 2012.

графический анализ первичной структуры серых чугунов проводили на шлифах, изготовленных из материала стандартных разрывных образцов (0 30 мм).

Дендриты первичного аустенита в сером чугуне при исследовании их методами оптической металлографии выявляли многократным травлением в смеси борной и серной кислот: борная кислота в количестве 10 - 30)г.; серная кислота - в объёме 100 мл. Травление кратковременное 6 - 10 с, после чего шлиф промывался проточной водой и слегка переполировы-вался.

Структура эвтектической кристаллизации для определения дисперсности эвтектических ячеек выявлялась травлением образцов реактивом, состоящим из 3 г CuSO4, 4 г пикри-

новой кислоты, 20 см концентрированной соляной кислоты и 100 см - этилового спирта. Наиболее четко эвтектические ячейки выявлялись после двух- и трехкратного травления и переполировки.

Количественные металлографические исследования с целью определения объемной доли дендритных кристаллов первичного аустенита (/дк) выполняли методом секущих на микроскопе Neophot - 21 при увеличениях от 10 до 100. Длину дендритов оценивали по наибольшему в данном сечении. Далее из выражения

где X - дендритный параметр - расстояние между центрами осей второго порядка, находили диаметр дендритных кристаллов.

Исследование морфологии дендритов выполняли на шлифах при увеличении от 3 до 100 раз с помощью оптической бинокулярной лупы МБС - 7 и оптических микроскопов Neophot - 21 и Olimpus BX61. Учитывая армирующую роль дендритов первичного аустенита, особое внимание уделялось их расположению относительно разрушающих нагрузок и упрочняемых ими ячеек эвтектики.

Для оценки дисперсности эвтектических ячеек, ограниченных сеткой фосфидной эвтектики, измеряли средний диаметр линейным методом, подсчитывая количество зерен на 1 см произвольной секущей не менее, чем в пяти местах шлифа при увеличении три-пять раз.

При идентификации природы аномальных дендритных кристаллов проводили качественный анализ микроликвации кремния по цвету плёнки SiO2, образующейся на поверхности шлифов при травлении их в кипящем водном растворе пикрата натрия. По мере убывания содержания Si в структурных составляющих чугуна цвет плёнки изменялся в следующем порядке: желто-зеленый, голубой, пурпурный, соломенно-желтый. По изменению интенсивности окрашивания отдельных микроликвационных зон строили варианты примерных профилей сегрегационных кривых, которые отражали усреднённые графические представления о распределении Si по сечению дендритных ветвей и в междуветвиях. Оценивали характер микроликвации кремния, однородность окраски в пределах каждой микроструктроной зоны, протяженность переходных зон изменения окраски, наличие скачкообразного изменения цвета и др.

Микрорентгеноспектральным анализом исследовали неоднородность армирующего дендритного каркаса чугуна по содержанию Si, Mn и S при непрерывном перемещении зонда и путём продолжительного (60 с) набора импульсов в отдельных характерных точках траектории, пересекающей дендритные ветви. Исследования микрохимической неоднородности распределения элементов по сечению армирующих дендритных ветвей серого чугуна выполняли на микрорентгеноспектральном анализаторе Super Prob-733.

Дюраметрические исследования изменения свойств дендритных ветвей проводили до и после термического воздействия.

Электронный растровый микроскоп РЭМ - 250 использовали для анализа разрушения серого чугуна с позиций рассмотрения его аналогии волокнистому композиту.

Термокинетические условия кристаллизации, в качестве возможной причины формирования аномальных дендритов, оценивали металлографически, сравнивая дисперсность первичной структуры в образцах чугуна обычного и аномального строения. При этом определяли:

Объёмную долю дендритов (/Дк);

Расстояния между ветвями второго порядка (X), мкм.;

Толщину дендритных ветвей, включая кайму мкм.;

Дисперсность ячеек эвтектики (0), мкм.;

Морфологию графитной фазы.

Все перечисленные измерения выполняли с применением известных методов количественной металлографии, достоверность которых обеспечивали достаточной базой измерений (> 30) и статистической обработкой результатов исследований.

Для измерения толщины дендритов использовали только поперечные сечения дендритных ветвей, находящихся в поле зрения в виде кругов или эллипсов. Толщины дендритов являются наименее удобными для измерения параметрами и для получения приемлемой точности требуют существенно большей базы, которая в этих исследованиях была увеличена до 100 - 150 измерений. Полагали, что разница в толщинах дендритов у аномальных и штатных чугу-нов могла стать информативным параметром для анализа особенностей кристаллизации наружных и внутренних микроструктурных зон в аномальных ветвях.

С позиций переохлаждения предусматривали также провести идентификацию графита в чугунах с аномальными структурами на предмет исключения или подтверждения возможности образования его вследствие распада карбидов. Для этих исследований намечали применение просвечивающей рентгеновской микроскопии тонких фольг чугуна на рентгеновском микроскопе МИР - 2 с острофокусной трубкой (анод вольфрамовый) для просвечивания фольг применяли излучение со сплошным спектром, имеющим максимум интенсивности на длине волны 0,2 нм (2 А). Подготовка образцов предусматривала вырезку чугунных пластинок толщиной 1 - 0,5 мм и последующее их утонение до фольги толщиной > 0,08 мм шлифованием на мелкозернистой бумаге вручную. Толщину фольги выбирали в соответствии с параметрами исследуемых элементов структуры.

Информативность объёмных изображений графитовых включений определялась их формой. Так, мелкие изолированные включения, хотя бы отдаленно напоминающие графит отжига, могли свидетельствовать в пользу распада карбидов, тогда как тонколепестковые розетки, растущие из одного центра, были бы характерными для выделения их из жидкой фазы.

Таким образом, сопоставительный анализ параметров первичной структуры в чугунах с аномальным и штатным строением дендритов позволял получить достоверную информацию о роли термокинетики кристаллизации в образовании аномалии.

Многообразие форм термодинамических воздействий на структуру чугуна требовало проведения предварительного анализа в рамках конкретной рабочей гипотезы, ограничивающей объём возможных вариантов исследований. В связи с этим, в качестве проверки рабочей гипотезы, объясняющей воздействие термодинамики кристаллизации на возникновение в дендритах высокоугловой границы, анализировали только возможность блокировки дендритного роста, например поверхностно - активными примесями.

Для определения содержания примесей предусматривали использовать фотоэлектрический квантометр ARL 3400. В сравнительных исследованиях штатных и аномальных образцов чугуна надеялись обнаружить различия в содержании примесей, обладающих положительной адсорбцией по Гиббсу. Наличие таких примесей могло кардинально изменять штатную дендритную кристаллизацию.

Результаты исследований

Проведённый анализ соответствия первичной структуры серого чугуна основным принципам упрочнения композитов с неориентированными дискретными волокнами показал, что первый принцип композиционного упрочнения ВКМ, заключающийся в том, что объёмная доля армирующих волокон в композите должна быть в переделах от 20 до 80 %, в чугуне выполняется.

Показано, что объёмная доля армирующих дендритных кристаллов (/Дк) в промышленных чугунах изменяется значительно: от 15 до 65 % (рис. 1).

/дк < 15 /дк Ä 25 /дк Ä 35 /дк « 45 /дк > 55

Рис. 1. Дендритная структура чугуна со степенью эвтектичности 0,82< Sc <1,0, приведенная толщина стенки отливки 15 мм, х 70

Следует также отметить, что объёмную долю дендритов (/Дк), выполняющих в чугуне роль армирующих волокон, современные литейные технологии позволяют в промышленных чугунах регулировать во всем интервале.

В результате исследований было установлено, что при прочих равных условиях с ростом количества дендритов в объёме металла прочность композиций чугуна увеличивается, но только до некоторого предела (~ 45 %), в котором происходит качественная смена зависимости, и прирост количества армирующих дендритов не находит отражения в увеличении прочности чугуна (рис. 2).

"Vi* ♦. к ♦ ♦♦Г «1 ♦♦ ♦ ф < * * ■

9ж* т ♦ X* ♦ ♦ « « ♦ < » 1

Рис. 2. Зависимость прочности (ов) серого чугуна при растяжении от объёмной доли дендритов (/ДК)

Для выяснения причин, приводящих к этому, исследовали распределение дендритов относительно приложенной нагрузки в поперечных и продольных сечениях чугунных разрывных образцов, имеющих при одинаковой объёмной доли существенно разные значения прочности.

При анализе было обнаружено, что чугун на стадии дендритного роста затвердевает в соответствии с классической теорией структурообразования. Оставив в стороне вопрос об

образовании зоны замороженных кристаллов, можно утверждать, что происходит образование двух зон. Первой зоны столбчатой кристаллизации, наблюдаемой с внешней поверхности образца и состоящей из дендритов с параллельными осями I порядка, и второй зоны равноосных кристаллов с беспорядочно ориентированными дендритами в его центральных участках, протяженность, которой варьировалась от 0,1 - 0,5 до 1,5 мм.

Таким образом, распределение дендритов относительно приложенной нагрузки различно и может быть стохастическим, транскристаллитным и смешанным (рис. 3).

«СТОХАСТИЧЕСКОЕ» «СМЕШАННОЕ, ЗОНАЛЬНОЕ» «ТРАНСКРИСТАЛЛИЗАЦИЯ»

ПРОДОЛЬНОЕ Е И ш шш

ПОПЕРЕЧНОЕ Щ Е Ч Е С в

СХЕМА ёШь, ♦

Рис. 3. Распределение дендритных кристаллов в объёме стандартных разрывных образцов, х 15

Транскристаллитное строение дендритных кристаллов, имеющих развитую ось I порядка и малую длину осей II порядка, наблюдается только при их высокой объёмной доле, и, как правило, направление осей I порядка перпендикулярно приложенному напряжению, что и вызывает уменьшение сопротивления чугуна распространению магистральной трещины, траектория которой легко огибает ветви дендритного каркаса, не пересекая их. Это приводит к тому, что увеличение объёмной доли дендритных ветвей не повышает прочности композиции в целом.

При отсутствии зоны столбчатой кристаллизации примерно в 45% случаях наблюдалось полностью стохастическое распределение армирующих дендритов, соответственно 35% приходилось на смешанное строение. В остальном объёме исследованных образцов было обнаружено (хотя и не имеющее сплошного фронта, а занимавшего только часть объёма в образце) явление транскристаллизации.

Исследования показали, что в промышленных чугунах длина дендритных кристаллов во много раз больше их диаметра 1дк = (3 ^ 16) ± 0,94 мм, ^дк = (20 ^ 28) ± 0,85 мкм, следовательно, отношение длины дендритов к их диаметру (/дк / ^дк) превышает минимально необходимую для волокнистых композиционных материалов величину, которая должна быть более 10.

В то же время при высокой объёмной доле дендритов наблюдается их пакетное строение (рис. 4). Дендритные кристаллы занимают при этом довольно большой объём, так как во время затвердевания разрастаются во всех направлениях.

Относительно приложенной нагрузки дендритные кристаллы имеют пакетное строение и стохастическую ориентацию, а магистральная трещина при распространении либо вызывает их разрушение, либо изменяет своё направление, огибая их, что, несомненно, повышает сопротивление материала разрушению. Чугуны с такими структурами расположены, как правило, на верхнем участке зависимости (рис. 2), обеспечивая прочность ~ 300 МПа.

Рис. 4. Пакетное строение дендритных кристаллов в чугуне, х 7

Показано, что в серых чугунах с разным количеством дендритов степень влияния размера ячеек эвтектики на прочность неодинакова. Повышение прочности под действием увеличения дисперсности ячеек матрицы наблюдается в чугунах с объёмной долей дендритов не более 25 %, а также в чугунах с высоким содержанием дендритов (> 45 %), т. е. когда упрочняющее действие дендритов ослаблено либо недостаточно (рис. 5).

Рис. 5. Зависимость прочности (ов) чугуна от диаметра ячеек эвтектической матрицы (-ОЯЧ)

Следующий принцип композиционного упрочнения ВКМ требует, чтобы в композите прочность волокон была больше прочности матрицы (ов ВОЛОКНО >> ов МАТРИЦА).

В сером чугуне при кристаллизации происходит обогащение дендритов первичного аустенита графитизирующими элементами, которые повышают активность углерода (ас), при этом карбидостабилизирующие элементы (которые снижают ас) обогащают эвтектическую составляющую. Такие особенности микроликвации компонентов вызывают перепад активности углерода Дас между микроликвационными зонами «дендрит - эвтектика». Чугун стремится к выравниванию активности углерода, но из-за низкой диффузионной подвижно-

Ш v j ¿¿г tri /ДК = 35.4 5

\ 1 fei J ■ v" iN« ■■ ■ >■15 Г. "Н /ДК = 15.25 я-

/дк = 5- 5...6 /дк = 45.5- щ ■ ■ щ ■ ■ л ■

300 400 500 600 700 800 900 1000 1100 1200

сти компонентов выравнивание ас осуществляется только за счёт массопереноса самого углерода из дендритов в эвтектику. Образовавшаяся ликвационная поляризация элементов обладает повышенной стойкостью и сохраняется при охлаждении как до интервала эвтектоид-ного превращения, так и до комнатной температуры, а также сохраняется и усугубляется при последующих повторных технологических или эксплуатационных докритических нагревах чугунных отливок .

Данная особенность микроликвационного распределения элементов снижает не только армирующую способность дендритного каркаса, но и прочность чугуна в целом. Так как эвтектоидное превращение формирует в дендритах вместо сорбитообразного перлита с прочностью 800 МПа, менее дисперсный, а следовательно, менее прочный перлит, или свободный феррит с прочностью менее 400 МПа . В работе было установлено, что разупрочняющее действие феррита, расположенного в первичных дендритах, в 15 - 20 раз сильнее, чем феррита, находящегося в эвтектической матрице.

Осуществление условия (ов

А) возможно, например, за счёт применения

низкомарганцевого чугуна со сбалансированно сниженным содержанием Si, что уменьшает склонность к ферритизации и разупрочнению дендритных ветвей . Однако при металлографических исследованиях промышленных серых чугунов были обнаружены дендритные ветви с сорбитом в сердцевине (НУ 269 - 316), который окружен ферритной (НУ 128 - 98), или перлитной (НУ 239) оболочкой (рис. 6 а, б).

Рис. 6. Структура дендритных кристаллов с сорбитообразным перлитом (а), х 100, и фрагменты ветвей (б) в ферритной (верх) и перлитной (низ) оболочках, х 500. Перераспределение углерода в сечении аномальных дендритов при термическом воздействии, х 500:

в - литая структура; г - обезуглероживание каймы. (Травление 4 % HNO3)

Термическая стойкость сорбита в центральных зонах дендритов аномального строения оказалась намного выше, чем перлита в штатных дендритах. И даже при полной ферритизации оболочек грубопластинчатого перлита (рис. 6, в, г), сопровождающейся резким падением в этих зонах значений микротвёрдости, а следовательно, и их прочности, прочность внутренних зон за счет стабильной сорбитообразной структуры сохранялась практически неизменной.

Аномальные дендритные структуры были обнаружены и в чугуне ваграночной плавки (1 плавка на 148 исследованных) и в электропечном чугуне (3 плавки на 106 исследованных) или 0,67 % и 2,83 % соответственно.

В чугуне также необходимо выполнение ещё одного принципа композиционного упрочнения: условия реализации прочной связи между упрочняющими волокнами и матрицей.

Исследования, проведенные с использованием растровой электронной микроскопии, показали, что армирующие дендриты, являясь наиболее прочными структурными элементами, не в полной мере воспринимают разрушающие напряжения и как бы «отслаиваются» от малопрочной эвтектической матрицы (рис. 7). На поверхности разрушения обнажается, по существу, неразрушенный дендритный каркас, наблюдаются выступающие дендритные ветви и регулярно расположенные полости, из которых дендритные ветви «выдернулись», т. е. в чугуне проявляются особенности разрушения, характерные для волокнистых композитов.

Рис. 7. Поверхность разрушения чугуна:

а - армирующая дендритная структура на поверхности излома, световая микроскопия, х10; б - выступающие армирующие дендриты, х 50; в - полости от "выдернувшихся" дендритов, растровая электронная микроскопия - РЭМ 250, х 100

Выполнение требования - усиления связи дендритов и эвтектической матрицы -также возможно реализовать за счет формирования в чугуне аномальной дендритной структуры в виде сорбитообразных дендритных ветвей окруженных сплошной «буферной» ферритной или перлитной оболочкой.

Принципиально важным представляется тот факт, что у всех заготовок чугуна с аномальной структурой дендритов была обнаружена совершенно одинаковая ферритно-графитовая эвтектика с вырожденной формой междендритного графита (рис. 6).

Крайне нежелательная, с точки зрения влияния на прочность чугуна, морфология графита в ферритной матрице, тем не менее, не проявила себя отрицательно в анализируемых композициях. Более того, сравнительно высокие значения прочности в пределах 245-290 МПа при относительно низкой твердости НВ 184-217 МПа обеспечивали этим чу-гунам хорошие показатели качества К = св / НВ.

Изучение истинной формы графита методом просвечивающей микрорентгенографии тонких фольг чугуна показало его монокристальное строение в объёме каждой эвтектической ячейки и "непрорастание" через границу в соседние ячейки (рис. 8).

Рис. 8. Характер графита в чугуне с аномальной вторичной структурой дендритов, х 100:

а - оптическая микроскопия; б - просвечивающая микроскопия Хотя этого нельзя обнаружить при изучении оптической микроскопией, определяющей только их размер, который в аномальных чугунах был достаточно большой.

Обнаружено, что дисперсность аномальных дендритных структур достаточно низкая, так как расстояние между ветвями второго порядка X аномальных дендритов составляет 34 мкм, а чугуна штатной кристаллизации 25. Толщины дендритных ветвей с оболочками превышают размеры ветвей в штатных образцах чугуна примерно в 1,4 - 1,8 раза .

Проведенные исследования позволили установить, что термокинетические условия кристаллизации в качестве возможной причины формирования аномальных дендритов не являются определяющим фактором.

Однородные ферритные оболочки (рис. 9, а) аномальных дендритов при цветном травлении (рис. 9, в) приобретают неоднородную окраску, которая характеризует, что внутренняя часть оболочки аномального дендрита содержит кремния меньше, чем центр дендрита, а наружная его превышает.

Рис. 9. Микроликвационная неоднородность аномальных дендритных ветвей чугуна,

ферритная оболочка:

а - травлено ниталем, х 100; б - травление в кипящем пикрате натрия х 100; в - нутренняя граница аномального дендрита х 2500

Внутренняя высокоугловая граница (рис. 9, в), отделяющие внешние оболочки от центра в дендритном кристалле, имеет достаточную толщину, хотя и появляется только в некоторых ветвях как с ферритными, так и с перлитными оболочками. Также при анализе были идентифицированы ветви без внутренних высокоугловых границ. Установлено, что при этом всегда визуально отличимой остаётся тонкая внешняя ферритная оторочка, которая окрашена так же, как эвтектический аустенит, но не образует внутри дендрита видимой границы. Она сливается с фоном при обычном травлении и отсутствует у дендри-тов штатной кристаллизации.

Построенные на основании визуальных оценок изменения цвета и интенсивности окрашивания варианты примерных профилей сегрегационных кривых показали качественный характер сегрегации Si по сечению ветвей в аномальных дендритах (рис. 10). Скачкообразное изменение концентрации Si свидетельствует о многослойном строении аномальных ветвей, включающем в себя последовательно затвердевшие элементы трёх микроликвационных зон: дендритов первичного аустенита, избыточного аустенита внутренней оболочки и осажденного аустенита внешней оболочки.

К концу дендритного роста оставшаяся междендритная жидкость чугуна всё ещё не достигает эвтектической концентрации, и из неё выделяется избыточный аустенит, осаждаясь на первичных дендритах. И хотя к началу эвтектического превращения наслоение избыточного аустенита из междендритной жидкости завершает формирование обо-

Полученные результаты были в дальнейшем подтверждены данными микрорентге-носпектрального анализа . Сканограммы распределения кремния, марганца и серы представлены на рис. 10.

Рис. 10. Качественный характер сегрегации элементов по сечению ветвей

в аномальных дендритах:

а - качественная схема изменения сегрегации Si по радиусу аномального дендритного кристалла при последовательной смене механизмов роста твёрдой фазы: 1 - первичный аустенит (непрерывный рост); 2 - избыточный аустенит (послойный рост); 3" - осажденный аустенит; 3 - эвтектическая смесь; б - изменение интенсивности характеристического излучения элементов (Мп, Si и S) дендритах аномального строения. Справа увеличенный фрагмент скано-граммы участка трассы с усреднением сегрегационной кривой кремния

Таким образом, по профилю сегрегационных кривых удалось идентифицировать разные механизмы роста твёрдой фазы, сменяющие друг друга в условиях реального з а-твердевания технических чугунов.

Дальнейшие исследования выполнялись в рамках допущений гипотезы о термодинамической природе обнаруженных аномалий дендритной структуры. Предположили, что наиболее вероятно возникновение в чугуне аномального строения дендритных кристаллов связано с блокировкой дендритного роста поверхностно - активными примесями.

Анализ химического состава каждого из чугунов, имеющих такую структуру (рис.6), выявил наличие примесей обладающих положительной адсорбцией по Гиббсу, суммарное количество которых вполне могло стать причиной преждевременного блокирования дендритного роста (табл. 1).

Таблица 1

Аs 8п РЬ 2п Б1 8е В

0,006 - 0,008 0,006 -0,009 0,001 0,001 -0,004 0,005 - 0,008 0,001 0,001 -0,005 0,001

Полученные данные (табл. 1) позволили подобрать состав комплексной добавки, введенной в расплав чугуна, и получить дендриты аномального строения (рис. 6). При этом прочность полученный чугунов находились в пределах марок СЧ 30 - СЧ 35, а штатных чугунов марок СЧ 20 - СЧ 25.

На основе проведенных исследований установлена значимость параметров первичной структуры серого чугуна, ответственных за повышение прочности в чугунных отливках. Показано, что объёмная доля дендритов в промышленных чугунах изменяется от 15 до 65 %. При этом при прочих равных условиях с ростом количества дендритных кристаллов в объёме материала прочность чугуна увеличивается, но только до некоторого предела (~ 45 %), что определяется распределением дендритов в объёме материала относительно приложенной нагрузки и их строением. Дальнейшее увеличение количества дендритов в материале не влияет на изменение величины прочности в сторону понижения или повышения его значения.

Показано, что в промышленных композициях чугуна с разным количеством дендритов степень влияния размера ячеек эвтектической матрицы на прочность неодинакова. Повышение прочности под действием увеличения дисперсности ячеек эвтектики наблюдается в чугунах с объёмной долей дендритов не более 25 %, а также в чугунах с высоким содержанием дендритов (> 45 %), т. е. когда упрочняющее действие дендритов ослаблено либо недостаточно.

Проведенные исследования выявили ранее неизвестные пути трансформации дендритной структуры чугуна, основанные на взаимосвязи между его составом и закономерностями структурообразования, что позволило разработать на этой основе новый метод регулирования прочностных свойств чугунных отливок.

Библиографический список

1. Гиршович, Н. Г. Первичная структура как критерий оценки механических свойств серого чугуна / Н. Г. Гиршович, А. Я. Иоффе, Г. А. Косников // Прогрессивное формообразование, металловедение и термическая обработка. Ленингр. дом науч.- техн. пропаганды. 1968. - 30 с.

2. Паттерсон, В. Микроструктура чугуна и его свойства // 29-й Международный конгресс литейщиков. - М.: Машиностроение, 1967. С. 55-63.

3. Троицкий, Г. Н. Свойства чугуна / Г. Н. Троицкий; под ред. М. Г. Окнова. - Ленинград -Москва: Государственное научно-техническое издательство литературы по черной и цветной металлургии 1941. - 290 с.

4. Ильинский, В. А. О композитном характере структуры кристаллизации чугунов с различной степенью эвтектичности / В. А. Ильинский, Л. В. Костылева // Изв. АН СССР. Металлы.

1986. № 5.C. 116-118.

5. Литвиненко, М. Н. Перспективы формирования в чугунных отливках структуры и свойств композиционного материала / М.Н. Литвиненко [и др.] // Литейное производство. 1994. № 12. С. 7-9.

6. Ильинский, В. А. Зависимость прочности серого чугуна от его первичной структуры / В.А. Ильинский, Л. В. Костылева // Литейное производство. 1997. № 5. С. 25-26.

7. Ильинский, В. А. Закономерности микроликвации в железоуглеродистых сплавах и новые возможности литейной технологии / В. А. Ильинский, А. А. Жуков, Л. В. Костылева // 55-й Международный конгресс литейщиков. - М., 1988. C. 1-11.

8. Конструкционные материалы: справочник / Б. Н. Арзамасов [и др.]; под ред. Б. Н. Арзамасова. - М.: Машиностроение, 1990. - 688 с.

9. Эллиотт, Р. Управление эвтектическим затвердеванием / Р. Эллиотт // Москва: Металлургия.

10. Палаткина, Л. В. Исследование аномалий дендритной структуры чугуна / Л. В. Палаткина, Л. В. Костылева, В. А. Ильинский // Металлы. 2010. № 03. С. 35-41.

11.Ильинский, В. А. Исследование микроликвационной неоднородности дендритных ветвей серого чугуна / В. А. Ильинский, Л. В. Костылева, Л. В. Палаткина // Металлургия машиностроения. 2009. № 06. C. 9-15.

Дата поступления в редакцию 13.04.2012

FEATURES OF STRUCTURIZATION IN GREY PIG-IRON

Volgograd State Technical University

The analysis of primary structure of pig-iron is made and the possible variant of its transformation influencing durability growth in pig-iron castings is considered.

Key words: gray pig-iron, composite hardening, dendrite, eutectic, activity of carbon (ас), durability.

Поделиться