Чем занимается теоретическая метрология. Законодательная метрология

Метрология – это наука об измерениях, методах достижения их единства и требуемой точности. Слово «метрология» образовано из двух греческих слов: «метрон» – мера и «логос» – учение. Дословный перевод слова «метрология» – учение о мерах. Долгое время метрология оставалась в основном описательной наукой о различных мерах и соотношениях между ними. Измерение – познавательный процесс, заключающийся в сравнении данной величины с известной величиной, принятой за единицу.

Предметом метрологии является обработка количественной информации о свойствах объектов и процессов с заданной достоверностью.

Меры на Руси: длина – аршин, сажень (3 аршина), верста; вес – пуд (16,4 кг); жидкие тела – бочки, ведра, кружки, бутылки.

В XV–XVIII вв. в связи с бурным ростом науки появилась необходимость измерения (барометры, гидрометры, манометры (давление воды), паровые машины (мощность измеряется в лошадиных силах)).

В XIX–XX вв. происходят новые физические открытия, появляется необходимость измерения в атомной и молекулярной физике. В 1827 г. в России образована комиссия образцовых мер и весов. Д.И. Менделеев сыграл большую роль в становлении метрологической службы, возглавляя ее с 1892 по1907 г. В 1970 г. образован Госстандарт СССР, в 1993 г. Госстандарт преобразован в Госстандарт России.

В современном понимании метрология – это наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности. К основным направлениям метрологии относятся:

– общая теория измерений;

– единицы физических величин и их системы;

– методы и средства измерений; методы определения точности измерений;

– основы обеспечения единства измерений и единообразия средств измерения;

– эталоны и образцовые средства измерений; методы передачи размеров единиц от эталонов и образцовых средств измерений рабочим средствам измерений.

Основным законодательным документом в метрологии является Закон «Об обеспечении единства измерений», принят в 1992 г., который направлен на защиту прав и интересов граждан, экономики страны от отрицательных последствий, недостоверных результатов измерений.

Метрологию подразделяют на теоретическую, прикладную и законодательную.

Теоретическая метрология занимается вопросами фундаментальных исследований, созданием системы единиц измерений, физических постоянных, разработкой новых методов измерения.

Прикладная (практическая) метрология занимается вопросами практического применения в различных сферах деятельности результатов теоретических исследований в рамках метрологии.

Законодательная метрология включает совокупность взаимообусловленных правил и норм, направленных на обеспечение единства измерений, которые возводятся в ранг правовых положений (уполномоченными на то органами государственной власти), имеют обязательную силу и находятся под контролем государства. Ее основная задача – создание и совершенствование системы государственных стандартов, которые устанавливают правила, требования и нормы, определяющие организацию и методику проведения работ по обеспечению единства и точности измерений, а также организация и функционирование соответствующей государственной службы.

    теоретическая метрология - Раздел метрологии, предметом которого является разработка фундаментальных основ метрологии. Примечание Иногда применяют термин фундаментальная метрология [РМГ 29 99] теоретическая метрология Раздел метрологии, в котором изучаются и… … Справочник технического переводчика

    Теоретическая метрология - – раздел метрологии, предметом которого является разработка фундаментальных основ метрологии. Примечание.Иногда применяют термин фундаментальная метрология. [РМГ 29 99 ГСИ] Рубрика термина: Общие термины Рубрики энциклопедии: Абразивное… … Энциклопедия терминов, определений и пояснений строительных материалов

    теоретическая метрология - teorinė metrologija statusas T sritis Standartizacija ir metrologija apibrėžtis Metrologijos šaka, susijusi su teoriniais dydžių matavimo vienetų ir jų sistemų aspektais, kurianti matavimo metodus, matavimo rezultatų apdorojimo būdus ir matavimo… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    теоретическая метрология - teorinė metrologija statusas T sritis fizika atitikmenys: angl. theoretical metrology vok. theoretische Metrologie, f rus. теоретическая метрология, f pranc. métrologie théorique, f … Fizikos terminų žodynas

    Метрология - Наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности. Законодательная метрология Раздел метрологии, включающий взаимосвязанные законодательные и научно технические вопросы, нуждающиеся в… …

    Теоретическая химия раздел химии, в котором главное место занимают теоретические обобщения, входящие в теоретический арсенал современной химии, например, концепции химической связи, химической реакции, валентности, поверхности потенциальной … Википедия

    Метрология теоретическая (фундаментальная) - раздел метрологии, предметом которого является разработка фундаментальных основ метрологии... Источник: РЕКОМЕНДАЦИИ ПО МЕЖГОСУДАРСТВЕННОЙ СТАНДАРТИЗАЦИИ. ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЯ. МЕТРОЛОГИЯ. ОСНОВНЫЕ ТЕРМИНЫ И… … Официальная терминология

    - (от греч. μέτρον мера, измерительный инструмент + др. греч. λόγος мысль, причина) наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности (РМГ 29 99). Предметом метрологии является извлечение… … Википедия

    Теоретическая физика раздел физики, в котором в качестве основного способа познания природы используется создание математических моделей явлений и сопоставление их с реальностью. В такой формулировке теоретическая физика является… … Википедия

    Раздел прикладной и законодательной метрологии, занимающийся обеспечением единства измерений в количественном химическом анализе. Особенности химической метрологии Отсутствие первичного эталона. Отсутствие эталона моля приводит к необходимости… … Википедия

    МИ 2365-96: Государственная система обеспечения единства измерений. Шкалы измерений. Основные положения. Термины и определения - Терминология МИ 2365 96: Государственная система обеспечения единства измерений. Шкалы измерений. Основные положения. Термины и определения: Абсолютная погрешность измерений (абсолютная погрешность) Погрешность измерений, выраженная в единицах… … Словарь-справочник терминов нормативно-технической документации

Книги

  • Теоретическая метрология. Часть 1. Общая теория измерений. Учебник для вузов , Шишкин Игорь Федорович. В первой части учебника на аксиоматической основе излагается общая теория измерений безотносительно к их областям и видам. Оценка качества измерительной информации соответствует требованиям…
  • Теоретическая метрология , И. Ф. Шишкин. В первой части учебника на аксиоматической основе излагается общая теория измерений безотносительно к их областям и видам. Оценка качества измерительной информации соответствует требованиям…

Метрология – это наука об измерениях, методах достижения их единства и требуемой точности. Слово «метрология» образовано из двух греческих слов: «метрон» – мера и «логос» – учение. Дословный перевод слова «метрология» – учение о мерах. Долгое время метрология оставалась в основном описательной наукой о различных мерах и соотношениях между ними. Измерение – познавательный процесс, заключающийся в сравнении данной величины с известной величиной, принятой за единицу.

Предметом метрологии является обработка количественной информации о свойствах объектов и процессов с заданной достоверностью.

Меры на Руси: длина – аршин, сажень (3 аршина), верста; вес – пуд (16,4 кг); жидкие тела – бочки, ведра, кружки, бутылки.

В XV–XVIII вв. в связи с бурным ростом науки появилась необходимость измерения (барометры, гидрометры, манометры (давление воды), паровые машины (мощность измеряется в лошадиных силах)).

В XIX–XX вв. происходят новые физические открытия, появляется необходимость измерения в атомной и молекулярной физике. В 1827 г. в России образована комиссия образцовых мер и весов. Д.И. Менделеев сыграл большую роль в становлении метрологической службы, возглавляя ее с 1892 по1907 г. В 1970 г. образован Госстандарт СССР, в 1993 г. Госстандарт преобразован в Госстандарт России.

В современном понимании метрология – это наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности. К основным направлениям метрологии относятся:

  • общая теория измерений;
  • единицы физических величин и их системы;
  • методы и средства измерений; методы определения точности измерений;
  • основы обеспечения единства измерений и единообразия средств измерения;
  • эталоны и образцовые средства измерений; методы передачи размеров единиц от эталонов и образцовых средств измерений рабочим средствам измерений.

Основным законодательным документом в метрологии является Закон «Об обеспечении единства измерений», принят в 1992 г., который направлен на защиту прав и интересов граждан , экономики страны от отрицательных последствий, недостоверных результатов измерений.

Метрологию подразделяют на теоретическую, прикладную и законодательную.

Теоретическая метрология занимается вопросами фундаментальных исследований, созданием системы единиц измерений, физических постоянных, разработкой новых методов измерения.

Прикладная (практическая) метрология занимается вопросами практического применения в различных сферах деятельности результатов теоретических исследований в рамках метрологии.

Законодательная метрология включает совокупность взаимообусловленных правил и норм, направленных на обеспечение единства измерений, которые возводятся в ранг правовых положений (уполномоченными на то органами государственной власти), имеют обязательную силу и находятся под контролем государства . Ее основная задача – создание и совершенствование системы государственных стандартов, которые устанавливают правила, требования и нормы, определяющие организацию и методику проведения работ по обеспечению единства и точности измерений, а также организация и функционирование соответствующей


  • Современные теоретические концепции национальной безопасности
    Для наиболее полного понимания энергетической безопасности необходимо пояснить, что энергетическая безопасность входит в состав более широкого понятия национальной безопасности. Концепция национальной безопасности была осмыслена политическими и экономическими науками сравнительно недавно. Впервые попытки...
    (Энергетическая интеграция как фактор обеспечения энергетической безопасности республики Казахстан)
  • Основные определения, положения и понятия в теоретической метрологии
    Фундаментальные понятия величин и процессов измерений В основе метрологии лежат следующие базовые положения. Действительное значение физической величины - значение физической величины, полученное экспериментальным путем с допустимой погрешностью. Оно может быть близко к истинному значению...
    (Метрология, стандартизация и сертификация)
  • Структурно-функциональные составляющие интеллектуальных ресурсов: сравнительный анализ теоретических подходов
    Эффективное управление интеллектуальными ресурсами позволяет учитывать все нематериальные активы, а также выявлять и воздействовать на резервы развития организации. Сегодня способы измерения интеллектуальных ресурсов могут стать универсальными инструментами оценки, как отдельных компаний, так и целых...
    (Интеллектуальные ресурсы организации как индикатор уровня ее компетентности)
  • Тест «проверь себя» (теоретическая часть)
    1. Что влияет на Ваше здоровье? 1. Культура. 2. Образ и условия жизни. 3. Биологические характеристики. 4. Социальная, духовная, экономическая и физическая окружающая среда. 5. Все выше перечисленное. 2. Оценка деятельности сердечно-сосудистой системы определяется по пробе: 1. Ромберга. 2. Руфье. 3....
    (Физическое воспитание детей дошкольного возраста)
  • Метрология возникла как наука о различных мерах и соотношениях между ними. Слово метрология образовано из двух греческих слов: «метрон» -- мера и «логос» -- учение, что буквально можно перевести как «учение о мерах».

    Измерения являются одним из важнейших путей познания природы, дают количественную характеристику окружающего нас мира, помогают раскрыть действующие в природе закономерности. Д. И. Менделеев, подчеркивая значение измерений для науки, писал, что «наука начинается с тех пор, как начинают измерять... точная наука немыслима без меры».

    Измерения имеют большое значение в современном обществе. Они дают возможность обеспечить взаимозаменяемость узлов и деталей, совершенствовать технологию, безопасность труда и других видов человеческой деятельности, качество продукции.

    Круг величин, подлежащих измерению, определяется разнообразием явлений, с которыми приходится сталкиваться человеку. Например, необходимость измерения длины, площади, объема, веса, механических, тепловых, электрических, световых и других величин.

    Сравнение опытным путем измеряемой величины с другой, подобной ей, принятой за единицу, составляет общую основу любых измерений.

    Разделом науки, изучающей измерения, является метрология.

    Метрология - это наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности; это одно из звеньев цепи между наукой и производством.

    В метрологии решаются следующие основные задачи: разработка общей теории измерений единиц физических величин и их систем, разработка методов и средств измерений, методов определения

    В настоящее время, в век ускоренного научно-технического прогресса, это понятие значительно расширено, так как, только обеспечив высокое качество измерений и контроля, можно достичь высокого качества продукции. При этом следует учитывать также юридические и экономические аспекты метрологической деятельности. В настоящее время метрология подразделяется по отраслям: строительная, медицинская, квантовая, спортивная и др. Однако для всех характерны единые принципы, а во многих случаях единые методы и способы.

    Измерения являются одним из самых древних занятий в познавательной деятельности человека. Их возникновение относится к истокам материальной культуры человечества.

    В древнейшие времена люди обходились только счетом однородных объектов -- голов скота, числа воинов и тому подобное. Такой счет не требовал введения понятия физической величины и установления условных единиц измерения. Не было потребности в изготовлении и использовании специальных технических средств для проведения счета. Однако по мере развития общества появилась необходимость в количественной оценке различных величин -- расстояний, веса, размеров, объемов и так далее. Эту оценку старались свести к счету, для чего выбирались природные и антропологические единицы. Например: время измерялось в сутках, годах; линейные размеры -- в локтях, ступнях; расстояния -- в шагах, сутках пути.

    Человечество на всем протяжении своего развития сталкивалось с необходимостью определения и оценки характерных свойств предметов и явлений, которые его окружали. Причем, если вначале число этих свойств было ограниченным, а знания о них были элементарными (длина, масса, время), то с течением времени и развитием науки и техники информация о них резко увеличилось как количественно, так и качественно.

    Позже, в процессе развития промышленности, были созданы специальные устройства -- средства измерений, предназначенные для количественной оценки различных величин. Так появились часы, весы, меры длины и другие измерительные устройства.

    Наука и промышленность не могут существовать без измерений. Каждую секунду в мире производятся миллиарды измерительных операций, результаты которых используются для обеспечения надлежащего качества и технического уровня выпускаемой продукции, обеспечения безопасной и безаварийной работы транспорта, для медицинских и экологических диагнозов и других важных целей. Практически нет ни одной сферы деятельности человека, где бы интенсивно не использовались результаты измерений, испытаний и контроля. Для их получения задействованы многие миллионы человек и большие финансовые средства. Примерно 15% общественного труда затрачивается на проведение измерений. По оценкам экспертов от 3 до 6% валового национального продукта (ВНП) передовых индустриальных стран тратится на измерения и связанные с ними операции.

    Основа любой формы управления, анализа, прогнозирования, планирования, контроля или регулирования Ї достоверная информация, которая может быть получена лишь путем измерения требуемых физических величин, параметров и показателей. И естественно, что только высокая и гарантированная точность результатов измерений обеспечивает правильность принимаемых решений. Современная наука и техника позволяют выполнять многочисленные и точные измерения, однако затраты на них становятся соизмеримыми с затратами на исполнительные операции.

    В промышленности строительных материалов и строительном комплексе при изготовлении продукции (на технологических линиях) и монтаже строительных конструкций (на строительных площадках) особенно важны контрольно-измерительные операции, от достоверности которых зависят как качество продукции, так и безопасность жизни людей. Поэтому для студентов технологических и строительных специальностей знание основ метрологии необходимо.

    На определенном этапе своего развития измерения стали причиной возникновения метрологии. Долгое время последняя существовала как описательная наука, констатирующая сложившиеся в обществе соглашения о мерах используемых величин. Развитие науки и техники привело к использованию множества мер одних и тех же величин, применяемых в различных странах. Так, расстояние в России измерялось верстами, а в Англии -- милями. Все это существенно затрудняло сотрудничество между государствами в торговле, науке.

    С целью унифицировать единицы физических величин, сделать их независимыми от времени и разного рода случайностей во Франции была разработана метрическая система мер. Эта система строилась на основе естественной единицы -- метра, равного одной сорокамиллионной части меридиана, проходящего через Париж. За единицу массы принимался килограмм -- масса кубического дециметра чистой воды при температуре + 4°С. Учредительное собрание Франции 26 марта 1791 г. утвердило предложения Парижской академии наук. Это явилось серьезной предпосылкой для проведения международной унификации единиц физических величин.

    В 1832 г. К. Гаусс предложил методику построения систем единиц физических величин как совокупности основных и производных величин. Он построил систему единиц, названную абсолютной, в которой за основу были приняты три произвольные, независимые друг от друга единицы: длины -- миллиметр, массы -- миллиграмм и времени -- секунда.

    В 1835 г. в России был издан указ "О системе Российских мер и весов", в котором были утверждены эталоны длины (платиновая сажень) и массы (платиновый фунт). В 1842 г. на территории Петропавловской крепости в Санкт-Петербурге в специально построенном здании открылось первое метрологическое учреждение России -- Депо образцовых мер и весов. В нем хранились эталоны и их копии, изготавливались образцовые меры для передачи в другие города, проводились сличения российских мер с иностранными. Деятельность Депо регламентировалась "Положением о мерах и весах", которое положило начало государственному подходу к обеспечению единства измерений в стране. В 1848 г. в России вышла первая книга по метрологии -- "Общая метрология", написанная Ф.И. Петрушевским. В этой работе описаны меры и денежные знаки различных стран.

    В 1875 г. семнадцать государств, в том числе и Россия, на дипломатической конференции подписали Метрическую конвенцию, к которой в настоящее время примкнула 41 страна мира. Согласно этой конвенции устанавливается международное сотрудничество подписавших ее стран. Для этого было создано Международное бюро мер и весов (МБМВ), находящееся в г.Севре близ Парижа. В нем хранятся международные прототипы ряда мер и эталоны единиц некоторых физических величин. В соответствии с конвенцией для руководства деятельностью МБМВ был учрежден Международный комитет мер и весов (МКМВ), в который вошли ученые из различных стран. Сейчас при МКМВ действуют семь консультативных комитетов: по единицам, определению метра, секунды, термометрии, электричеству, фотометрии и по эталонам для измерения ионизирующих излучений.

    Очень много для развития отечественной метрологии сделал Д.И. Менделеев. Период с 1892 по 1917 г. называют менделеевским этапом развития метрологии. В 1893 г. на базе Депо образцовых мер и весов была утверждена Главная палата мер и весов, управляющим которой до последних дней жизни был Д. И. Менделеев. Она стала одним из первых в мире научно-исследовательских учреждений метрологического профиля.

    До 1918 г. метрическая система внедрялась в России факультативно, наряду со старой русской и английской (дюймовой) системами. Значительные изменения в метрологической деятельности стали происходить после подписания Советом народных комиссаров РСФСР декрета "О введении международной метрической системы мер и весов". Внедрение метрической системы в России происходило с 1918 по 1927 г. После Великой Отечественной войны и до сего времени метрологическая работа в нашей стране проводится под руководством Государственного комитета по стандартам (Госстандарт).

    В 1960 г. XI Международная конференция по мерам и весам, приняла Международную систему единиц физических величин -- систему СИ. Сегодня метрическая система узаконена более чем в 124 странах мира.

    Метрология делится на три самостоятельных и взаимно дополняющих раздела, основным из которых является "Теоретическая метрология". В нем излагаются общие вопросы теории измерений. Раздел "Прикладная метрология" посвящен изучению вопросов практического применения в различных сферах деятельности результатов теоретических исследований. В заключительном разделе "Законодательная метрология" рассматриваются комплексы взаимосвязанных и взаимообусловленных общих правил, требований и норм, а также другие вопросы, нуждающиеся в регламентации и контроле со стороны государства, направленные на обеспечение единства измерений и единообразия средств измерений.

    Предметом метрологии является извлечение количественной информации о свойствах объектов и процессов с заданной точностью и достоверностью. Средства метрологии -- это совокупность средств измерений и метрологических стандартов, обеспечивающих их рациональное использование.

    Академик Б.М. Кедров предложил так называемый "треугольник наук", в "вершинах" которого находятся естественные, социальные и философские науки. По этой классификации метрология попадает на сторону "естественные -- социальные науки". Это связано с тем, что социальная значимость результатов, получаемых метрологией, очень велика. Например, отрицательные последствия от недостоверных результатов измерений в отдельных случаях могут быть катастрофическими. Правомерно и помещение метрологии на стороне "естественные -- философские науки". Это обусловлено значением метрологии для теории познания.

    Говоря о "месте" любой науки в системе наук, Б.М. Кедров указывал: "Место в системе наук выражает собой, во-первых, совокупность всех связей и отношений между данной наукой и непосредственно соприкасающимися с ней науками, а через них и с более отдаленными от нее, следовательно, со всей суммой человеческих знаний; это отвечает рассмотрению вопроса с его структурной стороны; во-вторых, определенную ступень развития научного познания, отражающую соответствующую ступень развития самого внешнего мира, а тем самым наличие переходов между данной наукой и непосредственно примыкающими к ней в общем ряду наук; это отвечает рассмотрению вопроса с его исторической или генетической стороны". Без измерений не может обойтись ни одна наука, поэтому метрология как наука об измерениях находится в тесной связи со всеми другими науками.

    Основным понятием метрологии является измерение. Согласно ГОСТ 16263, измерение -- это нахождение значения физической величины опытным путем с помощью специальных технических средств. Значимость измерений выражается в трех аспектах: философском, научном и техническом.

    Философский аспект состоит в том, что измерения являются важнейшим универсальным методом познания физических явлений и процессов. В этом смысле метрология как наука об измерениях занимает особое место среди остальных наук. Возможность измерения обуславливается предварительным изучением заданного свойства объекта измерений, построением абстрактных моделей как самого свойства, так и его носителя -- объекта измерения в целом. Поэтому место измерения определяется не среди первичных (теоретических или эмпирических) методов познания, а среди вторичных (квантитативных), обеспечивающих достоверность измерения. С помощью вторичных познавательных процедур решаются задачи формирования данных (фиксации результатов познания). Измерение с этой точки зрения представляет собой метод кодирования сведений, получаемых с помощью различных методов познания, т.е. заключительную стадию процесса познания, связанную с регистрацией получаемой информации.

    Научный аспект измерений состоит в том, что с их помощью в науке осуществляется связь теории и практики. Без измерений невозможна проверка научных гипотез и соответственно развитие науки.

    Измерения обеспечивают получение количественной информации об объекте управления или контроля, без которой невозможно точное воспроизведение всех заданных условий технического процесса, обеспечение высокого качества изделий и эффективного управления объектом. Все это составляет технический аспект измерений.

    Как и в любой науке, в метрологии необходимо сформулировать основные понятия, термины и постулаты, разработать учение о физических единицах и методологию. Данный раздел особенно важен ввиду того, что в основе отдельных областей измерений лежат специфические представления и в теоретическом плане области развиваются изолированно. При этих условиях недостаточная разработанность основных представлений заставляет решать аналогичные задачи, которые, по сути, являются общими, заново в каждой области.

    Основные понятия и термины. Этот подраздел занимается обобщением и уточнением понятий, сложившихся в отдельных областях измерений с учетом специфики метрологии. Главной задачей является создание единой системы основных понятий метрологии, которая должна служить базой для ее развития. Значение системы понятий определяется значимостью самой теории измерений и тем, что указанная система стимулирует взаимопроникновение методов и результатов, наработанных в отдельных областях измерений.

    Постулаты метрологии. В этом подразделе развивается аксиоматическое построение теоретических основ метрологии, выделяются такие постулаты, на основе которых можно построить содержательную и полную теорию и вывести важные практические следствия.

    Учение о физических величинах. Основной задачей подраздела является построение единой системы физических величин, т.е. выбор основных величин системы и уравнений связи для определения производных величин. Система физических величин служит основой для построения системы единиц физических величин, рациональный выбор которой важен для успешного развития теории и практики метрологического обеспечения.

    Методология измерений. В подразделе разрабатывается научная организация измерительных процессов. Вопросы метрологической методологии являются весьма существенными, поскольку она объединяет области измерений, различные по физической природе измеряемых величин и методам измерений. Это создает определенные трудности при систематизации и объединении понятий, методов и опыта, накопленного в различных областях измерений. К числу основных направлений работ по методологии относятся:

    1) переосмысление основ измерительной техники и метрологии в условиях существенного обновления арсенала методов и средств измерений и широкого внедрения микропроцессорной техники;

    2) структурный анализ измерительных процессов с системных позиций;

    3) разработка принципиально новых подходов к организации процедуры измерений.

    Теория единства измерений (Теория воспроизведения единиц физических величин и передачи их размеров) -- этот раздел традиционно является центральным в теоретической метрологии. Он включает в себя: теорию единиц физических величин, теорию исходных средств измерений (эталонов) и теорию передачи размеров единиц физических величин.

    Теория единиц физических величин. Основная цель подраздела -- совершенствование единиц физических величин в рамках существующей системы величин, заключающееся в уточнении и переопределении единиц. Другой задачей является развитие и совершенствование системы единиц физических величин, т.е. изменение состава и определений основных единиц. Работы в этом направлении проводятся постоянно на основе использования новых физических явлений и процессов.

    Теория исходных средств измерений (эталонов). В данном подразделе рассматриваются вопросы создания рациональной системы эталонов единиц физических величин, обеспечивающих требуемый уровень единства измерений. Перспективное направление совершенствования эталонов -- переход к эталонам, основанным на стабильных естественных физических процессах. Для эталонов основных единиц принципиально важным является достижение максимально возможного уровня для всех метрологических характеристик.

    Теория передачи размеров единиц физических величин. Предметом изучения подраздела являются алгоритмы передачи размеров единиц физических величин при централизованном и децентрализованном их воспроизведении. Указанные алгоритмы должны быть основаны как на метрологических, так и на технико-экономических показателях.

    Теория построения средств измерений. В разделе обобщается опыт конкретных наук в области построения средств и методов измерений. В последние годы все большее значение приобретают знания, накопленные при разработке электронных средств измерений электрических и особенно неэлектрических величин. Это связано с бурным развитием микропроцессорной и вычислительной техники и ее активным использованием при построении средств измерений, что открывает новые возможности при обработке результатов. Важной задачей является разработка новых и совершенствование известных измерительных преобразователей.

    Теория точности измерений. В данном разделе метрологии обобщены методы, развиваемые в конкретных областях измерений. Он состоит их трех подразделов: теории погрешностей, теории точности средств измерений и теории измерительных процедур.

    Теория погрешностей. Этот подраздел является одним из центральных в метрологии, поскольку результаты измерений объективны настолько, насколько правильно оценены их погрешности. Предметом теории погрешностей является классификация погрешностей измерений, изучение и описание их свойств. Сложившееся исторически деление погрешностей на случайные и систематические, хотя и вызывает справедливые нарекания, тем не менее продолжает активно использоваться в метрологии. Как известная альтернатива такому делению погрешностей может рассматриваться развиваемое в последнее время описание погрешностей на основе теории нестационарных случайных процессов. Важной частью подраздела является теория суммирования погрешностей.

    Теория точности средств измерений. Подраздел включает: теорию погрешностей средств измерений, принципы и методы определения и нормирования метрологических характеристик средств измерений, методы анализа их метрологической надежности.

    Теория погрешностей средств измерений наиболее детально разработана в метрологии. Значительные знания накоплены и в конкретных областях измерений, на их основе развиты общие методы расчета погрешностей средств измерений. В настоящее время в связи с усложнением средств измерений, развитием микропроцессорных измерительных устройств актуальной стала задача по расчету погрешностей цифровых средств измерений вообще и измерительных систем и измерительно-вычислительных комплексов в частности.

    Принципы и методы, определения и нормирования метрологических характеристик средств измерений достаточно хорошо разработаны. Однако они требуют модификации с учетом специфики метрологии и в первую очередь тесной связи определения метрологических характеристик СИ с их нормированием. К числу не до конца решенных задач следует отнести определение динамических характеристик средств измерений и градуировочных характеристик первичных измерительных преобразователей. По мере совершенствования средств обработки электрических измерительных сигналов наиболее существенные метрологические проблемы концентрируются вокруг выбора первичного преобразователя. Ввиду разнообразия принципов действия и типов средств измерений, а также повышения требуемой точности измерений появляется проблема выбора нормируемых метрологических характеристик средств измерений.

    Теория метрологической надежности средств измерений по своей целевой направленности связана с общей теорией надежности. Однако специфика метрологических отказов и, прежде всего, непостоянство во времени их интенсивности делают невозможным автоматическое перенесение методов классической теории надежности в теорию метрологической надежности. Необходима разработка специальных методов анализа метрологической надежности средств измерений.

    Теория измерительных процедур. Повышение сложности измерительных задач, постоянный рост требований к точности измерений, усложнение методов и средств измерений обуславливают проведение исследований, направленных на обеспечение рациональной организации и эффективного выполнения измерений. При этом главную роль играет анализ измерений как совокупности взаимосвязанных этапов, т.е. как процедуры. Подраздел включает теорию методов измерений; методы обработки измерительной информации; теорию планирования измерений; анализ предельных возможностей измерений.

    Теория методов измерений -- подраздел, посвященный разработке новых методов измерений и модификации существующих, что связано с ростом требований к точности измерений, диапазонам, быстродействию, условиям проведения измерений. С помощью современных средств измерений реализуются сложные совокупности классических методов. Поэтому остается актуальной традиционная задача совершенствования существующих методов и исследования их потенциальных возможностей с учетом условий реализации.

    Методы обработки измерительной информации, используемые в метрологии, основываются на методах, которые заимствуются из математики, физики и других дисциплин. В связи с этим актуальна задача обоснованности выбора и применения того или иного способа обработки измерительной информации и соответствия требуемых исходных данных теоретического способа тем, которыми реально располагает экспериментатор.

    Теория планирования измерений -- область метрологии, которая весьма активно развивается. К числу ее основных задач относятся уточнение метрологического содержания задач планирования измерений и обоснование заимствований математических методов из общей теории планирования эксперимента.

    Анализ предельных возможностей измерений на данном уровне развития науки и техники позволяет решить такую главную задачу, как исследование предельной точности измерений при помощи конкретных типов или экземпляров средств измерений.

    Поделиться